The radius of a nucleus of hydrogen is approximately

, while we can use the Borh radius as the distance of an electron from the nucleus in a hydrogen atom:

The radius of a dime is approximately

: if we assume that the radius of the nucleus is exactly this value, then we can find how far is the electron by using the proportion

from which we find

So, if the nucleus had the size of a dime, we would find the electron approximately 500 meters away.
Answer:
5308.34 N/C
Explanation:
Given:
Surface density of each plate (σ) = 47.0 nC/m² = 
Separation between the plates (d) = 2.20 cm
We know, from Gauss law for a thin sheet of plate that, the electric field at a point near the sheet of surface density 'σ' is given as:

Now, as the plates are oppositely charged, so the electric field in the region between the plates will be in same direction and thus their magnitudes gets added up. Therefore,

Now, plug in
for 'σ' and
for
and solve for the electric field. This gives,

Therefore, the electric field between the plates has a magnitude of 5308.34 N/C
Answer:
screw and pulley
Explanation:
because they didn't have any of the other tools in that time
Force is mass times acceleration. This means an object with a larger mass needs a stronger force to be moved along at the same acceleration as an object with a small mass
Electric potential energy, or Electrostatic potential energy, is a potential energy that results from conservative Coulomb forces and is associated with the configuration of a particular set of point charges within a defined system.