Force = mass*acceleration so
3.6*2.5 =9 Newtons
Answer:
6.003×10¯⁶ N
Explanation:
We'll begin by converting 1 cm to m. This can be obtained as follow:
100 cm = 1 m
Therefore,
1 cm = 1 cm × 1 m / 100 cm
1 cm = 0.01 m
Finally, we shall determine the gravitational attraction. This can be obtained as follow:
Mass 1 (M₁) = 3 Kg
Mass 2 (M₂) = 3 Kg
Distance apart (r) = 0.01 m
Gravitational constant (G) = 6.67×10¯¹¹ Nm²/Kg²
Force of attraction (F) =?
F = GM₁M₂ / r²
F = 6.67×10¯¹¹ × 3 × / 0.01²
F = 6.003×10¯¹⁰ / 1×10¯⁴
F = 6.003×10¯⁶ N
Thus the gravitational attraction is 6.003×10¯⁶ N
The law of conservation of energy states that in any reaction, energy cannot be created or destroyed.
In other words, energy has to be conserved in every reaction.
Answer:
1) 3.07kgm/s
2) 5.56kgm/s
3) 76.16N
4) 4.33kgm/s
5) 0.57s
6) -8.66J
Explanation:
Given
m = 0.221kg
v = 13.9m/s
θ = 25°
t = 0.073s
1) to get the magnitude of the initial momentum is the racquet ball. We use the formula,
P(i) = mv(i)
P(i) = 0.221 * 13.9
P(i) = 3.07kgm/s
2) Magnitude of the change in momentum of the ball,
P(i,x) = P(i) cos θ
P(i,x) = 3.07 * cos25
P(i,x) = 3.07 * 0.9063
P(i,x) = 2.78
ΔP = 2P(i,x)
ΔP = 2 * 2.78 = 5.56kgm/s
3) magnitude of the average force exerted by the wall,
F(ave) = ΔP/Δt
F(ave) = 5.56/0.073
F(ave) = 76.16N
4) ΔP(z) = mv(f) - mv(i)
ΔP(z) = 0.221*-7.8 - 0.221*11.8
ΔP(z) = -1.72 - 2.61
ΔP(z) = 4.33kgm/s
5) F(ave) = ΔP/Δt
Δt = ΔP/F(ave)
Δt = 4.33 / 76.16
Δt = 0.57s
6) KE(i) = 0.5mv(i)²
KE(f) = 0.5mv(f)²
ΔKE = 0.5m[v(f)² - v(i)²]
ΔKE = 0.5 * 0.221 [(-7.8)² - 11.8²]
ΔKE = 0.1105 ( 60.84 - 139.24 )
ΔKE = 0.1105 * -78.4
ΔKE = -8.66J