a = 3, b= - 4 and c = - 4
expand the left side using FOIL
(2x + 1)(ax + b) = 2ax² + 2bx + ax + b = 2ax² + x(2b + a) + b
compare the coefficients of expressions on left and right sides.
compare 2ax² + x(2b +a) + b with 6x² - 5x + c
coefficients of x² terms → 2a = 6 ⇒ a = 3
coefficients of x terms → 2b + a = - 5 → 2b + 3 = - 5 → 2b = - 8 ⇒ b = - 4
constant terms c = b = - 4
Answer:
D) v = -2,000y + 20,000.
Step-by-step explanation:
The question gives a linear relationship between two quantities. This means that the relationship between the initial value of the car and the amount it depreciates each year is proportional, or constant. Since the value of the car decreases by 10% of its initial value each year, then each year the value will decrease by 10% of 20,000 or 0.10 x 20000 = $2,000. Since we know the value is decreasing each year, this amount would be subtracted from the initial value of $20,000. So, D) v = -2,000y + 20,000 would be the only equation that represents this scenario.
<span>First find 15% of 800 and subtract that from 800 ( 800-(.15*800)) which equals 680 and multiply the 680 by the 30 days of April. You will get 20400</span>
9514 1404 393
Answer:
F20 = 15985k -20361g
Step-by-step explanation:
If we assume F3 and F4 are the third and fourth terms of an arithmetic sequence, the common difference is ...
d = F4 -F3 = (945k -713g) -(5k +515g)
d = 940k -1228g
Then the 20th term is ...
F20 = F3 +(20 -3)d = (5k +515g) +17(940k -1228g)
F20 = 15985k -20361g