
According to above question ~
Let's find the charge (q) by using formula ~
Hence, 12 coulombs of charge flow past any point in the wire in 3 seconds
Answer:
The magnitude of the electric force between the to protons will be 57.536 N.
Explanation:
We can use Coulomb's law to find out the force, in scalar form, will be:
.
Now, making the substitutions
,
,
,
we can find:
.
.
Not so big for everyday life, but enormous for subatomic particles.
The spring is initially stretched, and the mass released from rest (v=0). The next time the speed becomes zero again is when the spring is fully compressed, and the mass is on the opposite side of the spring with respect to its equilibrium position, after a time t=0.100 s. This corresponds to half oscillation of the system. Therefore, the period of a full oscillation of the system is

Which means that the frequency is

and the angular frequency is

In a spring-mass system, the maximum velocity of the object is given by

where A is the amplitude of the oscillation. In our problem, the amplitude of the motion corresponds to the initial displacement of the object (A=0.500 m), therefore the maximum velocity is
To find the impulse you multiply the mass by the change in velocity (impulse=mass×Δvelocity). So in this case, 3 kg × 12 m/s ("12" because the object went from zero m/s to 12 m/s).
The answer is 36 kg m/s
Answer:
no:
Explanation:
it would grow and no longer be able to fit through the loop due to the hot air expanding.