Answer:
Assuming that the length of the magnet is much smaller than the separation between it and the charge. As a result of magnetic interaction (i.e., ignore pure Coulomb forces) between the charge and the bar magnet, the magnet will not experience any torque at all - option A
Explanation:
Assuming that the length of the magnet is much smaller than the separation between it and the charge. As a result of magnetic interaction (i.e., ignore pure Coulomb forces) between the charge and the bar magnet, the magnet will not experience any torque at all; the reason being that: no magnetic field is being produced by a charge that is static. Only a moving charge can produce a magnetic effect. And the magnet can not have any torque due to its own magnetic lines of force.
Answer:
x = 2.044 m
Explanation:
given data
initial vertical component of velocity = Vy = 2sin18
initial horizontal component of velocity = Vx = 2cos18
distance from the ground yo = 5m
ground distance y = 0
from equation of motion


solving for t
t = 1.075 sec
for horizontal motion

x = 2cos18*1.075
x = 2.044 m
This question is wrong because in momontum we will write acceleration instead of speed. suppose acceleration is 5m/s2 then
P= ma
then put values
#8 positive kinetic energy
Answer
given,
frequency from Police car= 1240 Hz
frequency of sound after return = 1275 Hz
Calculating the speed of the car = ?
Using Doppler's effect formula
Frequency received by the other car
..........(1)
u is the speed of sound = 340 m/s
v is the speed of the car
Frequency of the police car received

now, inserting the value of equation (1)


1.02822(340 - v) = 340 + v
2.02822 v = 340 x 0.028822
2.02822 v = 9.799
v = 4.83 m/s
hence, the speed of the car is equal to v = 4.83 m/s