Answer:

Explanation:
We can use the following SUVAT equation to solve the problem:

where
v = 0 is the final velocity of the car
u = 24 m/s is the initial velocity
a is the acceleration
d = 196 m is the displacement of the car before coming to a stop
Solving the equation for a, we find the acceleration:

Answer:
The vibrational frequency of the rope is 5 Hz.
Explanation:
Given;
number of complete oscillation of the rope, n = 20
time taken to make the oscillations, t = 4.00 s
The vibrational frequency of the rope is calculated as follows;

Therefore, the vibrational frequency of the rope is 5 Hz.
Answer:
Explanation:
ignore air resistance
Let t be the time of fall for the dropped stone.
½(9.8)t² = 43.12(t - 2.2) + ½(9.8)(t - 2.2)²
4.9t² = 43.12t - 94.864 + 4.9(t² - 4.4t + 4.84)
4.9t² = 43.12t - 94.864 + 4.9t² - 21.56t + 23.716
0 = 21.56t - 71.148
t = 71.148/21.56 = 3.3 s
h = ½(9.8)3.3² = 53.361 = 53 m
or
h = 43.12(3.3 - 2.2) + ½(9.8)(3.3 - 2.2)² = 53.361 = 53 m
I don't know fully, but I know S waves can't travel through liquids. Hope that helps a little!