To solve this problem, we use the equation:
<span>d = (v^2 - v0^2) /
2a</span>
where,
d = distance of collapse
v0 = initial velocity = 101 km / h = 28.06 m / s
v = final velocity = 0
a = acceleration = - 300 m / s^2
d = (-28.06 m / s)^2 / (2 * - 300 m / s^2)
<span>d = 1.31 m</span>
Answer:
0.500 T
Explanation:
Since the change in time and the number of coils are both 1, I set the problem up to be 1.3=(1.5(x)-13(x)). I then plugged in numbers for x until I got the answer to be 1.3 V.
Answer:
Explanation:
Let the thickness of the film is t and the refractive index of the material of film is n.
When light travels through a sheet of thickness t, the optical path traveled is nt.
When the path of one of slit is covered by a sheet of thickness t, the optical path becomes
x = ( n - 1) t
As the one fringe is shift, so the optical path changed by one wavelength.
i.e., x = λ
So, λ = ( n - 1) t
