You have to draw a mathematical spatial axes .in order to judge is it right or not .. well you have to draw the crest and trough both of 1 cm in length and the total wavelength (same phase on the wave of 2 cm ) something like this
The Calvin cycle<span> refers to the light-independent reactions in photosynthesis that take place in three key steps. Although the </span>Calvin Cycle<span> is not directly dependent on light, it is indirectly dependent on light since the necessary energy carriers (ATP and NADPH) are products of light-dependent reactions.
So basically it indirectly needs the light, even it's called light-independant reaction.
So the answer is the last one.</span>
No because there must be an even # if their is an even amount one of the forces isn’t being cancelled
Given :
Initial speed of car A is 15 m/s and initial speed of car B is zero.
Final speed of car A is zero and final speed of car B is 10 m/s.
To Find :
What fraction of the initial kinetic energy is lost in the collision.
Solution :
Initial kinetic energy is :

Final kinetic energy is :

Now, fraction of initial kinetic energy loss is :

Therefore, fraction of initial kinetic energy loss in the collision is 1.25 .
Answer:
The answer to your question is vo = 5.43 m/s
Explanation:
Data
distance = d= 5.8 m
height = 3 m
height 2 = 1.7 m
angle = 60°
vo = ?
g = 9.81 m/s²
Formula
hmax = vo²sinФ/ 2g
Solve for vo²
vo² = 2ghmax / sinФ
Substitution
vo² = 2(9.81)(3 - 1.7) / 0.866
Simplification
vo² = 19.62(1.3) / 0.866
vo² = 25.51 / 0.866
vo² = 29.45
Result
vo = 5.43 m/s