Answer:
anawer is none of the above
Answer:
14.4g
Explanation:
First, we need to write a balanced equation for the reaction between Fe and O2 to produce Fe2O3. This is illustrated below:
4Fe + 3O2 —> 2Fe2O3
From the balanced equation,
4moles of Fe produced 2moles of Fe2O3.
Therefore, 0.18mol of Fe will produce = (0.18x2) /4 = 0.09mol of Fe2O3.
Now we need to find the mass present in 0.09mol of Fe2O3. This can be achieved by doing the following:
Molar Mass of Fe2O3 = (56x2) + (16x3) = 112 + 48 = 160g/mol
Number of mole of Fe2O3 = 0.09mol
Number of mole = Mass /Molar Mass
Mass = number of mole x molar Mass
Mass of Fe2O3 = 0.09 x 160 = 14.4g
Answer : The compound that would be most soluble in water is CH3CH2CH2OH
Explanation :
Water is a polar solvent and can dissolve polar molecules. This is based on the principle "Like dissolves like".
Among the given molecules, CH3CH2CH2CH3 is a hydrocarbon known as butane. All hydrocarbons are non polar. Therefore this compound will not be soluble in water.
The remaining compounds are polar, but Ch3CH2CH2OH shows greater solubility in water owing to presence of hydrogen bonding.
Hydrogen bonding is a type of intermolecular force that gets formed when a compound has hydrogen atom directly attached to highly electro-negative N, F or O atom.
When CH3CH2CH2OH is dissolved in water, it forms hydrogen bonds with water molecules. Due to this hydrogen bonding, the molecule shows greater solubility.
Therefore CH3CH2CH2OH is the most soluble compound in water
A: It prevents most reactions from occurring spontaneously.
The answer above is correct.