Answer:
I think the answer is the 3rd one
<u>Answer:</u> The equation is given below.
<u>Explanation:</u>
Single replacement reactions are the chemical reactions in which more reactive metal displaces a less reactive metal from its chemical reaction. General equation for these reactions is given by the equation:

Metal A is more reactive than metal B.
The reactivity of metals is judged with the help of reactivity series. In this series, the metals lying above are more reactive than the metals which lie below in the series.
For the reaction of solid lithium metal and nitric acid, the equation follows:

This is a type of single replacement reaction because Lithium (more reactive metal) is replacing Hydrogen (less reactive metal) from the chemical reaction.
Answer: 700 has one significant figure which is 7.
Explanation: These are some rules for significant figures
•All non-zero digits are significant: 1,2,3,4,5,6,7,8,9
•Zero between non-zero digits are significant: They are three significant figures in 203.
•Leading zeros are not significant: There are two significant figures in 0.56.
•Trailing zero to the right of decimal are significant. There are four significant figures in 62.00
•Trailing zeros in a whole number with the decimal shown are significant: This makes "700." three significant figures.
•Trailing zeros in a whole number with no decimal shown are not significant: This makes 700 one significant figure.
Sediment is created by wind and water.
Answer : The pH of the solution is, 3.41
Explanation :
First we have to calculate the moles of
.


Now we have to calculate the value of
.
The expression used for the calculation of
is,

Now put the value of
in this expression, we get:



The reaction will be:

Initial moles 0.375 0.100 0.375
At eqm. (0.375-0.100) 0 (0.375+0.100)
= 0.275 = 0.475
Now we have to calculate the pH of solution.
Using Henderson Hesselbach equation :
![pH=pK_a+\log \frac{[Salt]}{[Acid]}](https://tex.z-dn.net/?f=pH%3DpK_a%2B%5Clog%20%5Cfrac%7B%5BSalt%5D%7D%7B%5BAcid%5D%7D)
![pH=pK_a+\log \frac{[F^-]}{[HF]}](https://tex.z-dn.net/?f=pH%3DpK_a%2B%5Clog%20%5Cfrac%7B%5BF%5E-%5D%7D%7B%5BHF%5D%7D)
Now put all the given values in this expression, we get:
![pH=3.17+\log [\frac{(\frac{0.475}{1.50})}{(\frac{0.275}{1.50})}]](https://tex.z-dn.net/?f=pH%3D3.17%2B%5Clog%20%5B%5Cfrac%7B%28%5Cfrac%7B0.475%7D%7B1.50%7D%29%7D%7B%28%5Cfrac%7B0.275%7D%7B1.50%7D%29%7D%5D)

Thus, the pH of the solution is, 3.41