A flask with a volume of 125.0 mL contains air with a density of 1.298 g/L. what is the mass of the air contained in the flask<span>The given are: </span>
<span><span>1. </span>Mass = ?</span><span><span /></span>
<span><span>2. </span>Density = 1298 g/L</span>
3. Volume = 125mL to L
a. 125 ml x 0.001l/1ml = 0.125 L
<span>Formula and derivation: </span><span><span>
1. </span>density = mass / volume</span> <span><span>
2. mass </span>= density / volume</span>
<span>Solution for the problem: </span><span><span>
1. mass = </span></span> <span> 1298 g/L / 0.125 L = 10384g
</span>
Answer:
B
Explanation:
since isotopeA has bigger mass number
Producer. Hope this helps!
6.022x10^23 is Avogadro’s number. Use this whenever you work with Stoichiometry involving Atoms, formula units, or molecules. 1 mol of anything is always Avogadro’s number.
Multiply everything on the top= 6.93 x 10^23
Divide by everything on the bottom = 6.93 x 10^23
Answer: 6.93 x 10^23 atoms Cu.
Answer: HCI + KOH → KCI + H20
Explanation:
HCI(aq) + KOH(aq) → KCI(aq) + H20(l)
Acid + base → Salt + Water.
The above is a neutralization reaction in which an acid, aqeous HCl reacts completely with an appropriate amount of a base, aqueous KOH to produce salt, aqueous KCl and water, liquid H2O only.
This is a neutralization reaction since, the hydrogen ion, H+, from the HCl is neutralized by the hydroxide ion, OH-, from the KOH to form the water molecule, H2O and salt, KCl only.