Answer:
Increasing temperature increases the solubility of most salts, but not all. The reason for the differences is that dissolution involves three steps: breaking bonds of salt in the lattice; forming cavities in water the same size as the ions; interacting the salt with water in the cavity.
SODIUM HYDROXIDE
IUPAC ID
Sodium hydroxide
Sodium oxidanide
Answer:
-255.4 kJ
Explanation:
The free energy of a reversible reaction can be calculated by:
ΔG = (ΔG° + RTlnQ)*n
Where R is the gas constant (8.314x10⁻³ kJ/mol.K), T is the temperature in K, n is the number of moles of the products (n =1), and Q is the reaction quotient, which is calculated based on the multiplication of partial pressures by the partial pressure of the products elevated by their coefficient divide by the multiplication of the partial pressure of the reactants elevated by their coefficients.
C₂H₂(g) + 2H₂(g) ⇄ C₂H₆(g)
Q = pC₂H₆/[pC₂H₂ * (pH₂)²]
Q = 0.261/[8.58*(3.06)²]
Q = 3.2487x10⁻³
ΔG = -241.2 + 8.314x10⁻³x298*ln(3.2487x10⁻³)
ΔG = -255.4 kJ
Answer:
https://youtu.be/3zmeVamEsWI
Explanation:
It is defined as the ratio of moles of one substance to the moles of another substance in a balanced equation. ... Mole ratios are the central step in performing stoichiometry because they allow us to convert moles of one substance to moles of another substance.