Answer:
Solution A that will form a precipitate with Ksp = 2.3 x 10−4
Explanation:
Li₃PO₄ ⇄ 3 Li⁺(aq) + PO₄³⁻(aq)
3S S
Where S = Solubility(mole/lit) and Ksp = Solubility product
⇒ Ksp = (3S)³ x (S)
⇒ 27S⁴ = 2.3x10−4
⇒ S = 0.05 mol/lit
Concentration of Li₃PO₄ precipitate = 0.05
<u>Solution A </u>
0.500 lit of a 0.3 molar LiNO₃ contains 0.5 x 0.3 = 0.15 mole
0.4 lit of a 0.2 molar Na₃PO₄ contains = 3 x 0.4 x 0.2 = 0.24 mole
3 LiNO₃ + Na₃PO₄ → 3 NaNO₃ + Li₃PO₄
(Mole/Stoichiometry)

= 0.05 = 0.24
Since from (Mole/Stoichiometry) ratio we can conclude that LiNO₃ is limiting reagent.
So concentration of Li₃PO₄ is equal to 0.05.
Answer:
See explanation below
Explanation:
I found a picture of this exercise, to show you how to do this problem.
The first picture is the compound, and the second is the mechanism of reaction to do this claisen rearrangement.
Hope this helps
Answer:
V₂ = 21.3 dm³
Explanation:
Given data:
Initial volume of gas = 3.00 dm³
Initial pressure = 101 Kpa
Final pressure = 14.2 Kpa
Final volume = ?
Solution;
The given problem will be solved through the Boly's law,
"The volume of given amount of gas is inversely proportional to its pressure by keeping the temperature and number of moles constant"
Mathematical expression:
P₁V₁ = P₂V₂
P₁ = Initial pressure
V₁ = initial volume
P₂ = final pressure
V₂ = final volume
Now we will put the values in formula,
P₁V₁ = P₂V₂
101 Kpa × 3.00 dm³ = 14.2 Kpa × V₂
V₂ = 303 Kpa. dm³/ 14.2 Kpa
V₂ = 21.3 dm³
Explanation:
Answer:
The answer is treated below.
Explanation:
<u>Natural gas</u>: Natural gas is not used in its pure form; it is processed and converted into cleaner fuel for consumption. It is a fossil fuel composed almost entirely of methane, but contain small amounts of other gases, including ethane, propane, pentane and butane. It is a combustible, gaseous mixture of simple hydrocarbon compounds, usually found in deep underground reservoirs formed by porous rock. Natural gas is mainly used as fuel for generating heat and electricity.
<u>Liquefied petroleum gas (LPG)</u>: Liquefied Petroleum Gas is a byproduct of natural gas and oil extraction and crude oil refining . At room temperature, liquefied petroleum gas is a colourless and odourless gas which consists generally of butane (C4H10) or propane (C3H8) or a mixture of both.
<u>Liquefied natural gas (LNG)</u>: Is natural gas that has been liquefied for ease of transport or storage. It is refrigerated to a very low temperature (-162 Celsius). At this temperature it becomes an odourless, non-toxic liquid that can be safely transported over long distances.
<u><em> Three countries that have most of the world’s natural gas reserves</em></u>
- Russia
- Iran
- Qatar
<em>Major advantages of using conventional natural gas as an energy resource:</em>
- It is less expensive when compared to other fossil fuels.
- It is safer and easier to store when compared to other fossil fuels
<em>Major disadvantages of using conventional natural gas as an energy resource:</em>
- It costs more to recover the remaining natural gas because of flow, access, etc.
- It is not a renewable source.
- it is a combustible material, It must be handled with care.
- It does not contribute to greenhouse gases.
Three sources of unconventional natural gas :
- <em>Tight Gas</em>
- <em>Shale Gas</em>
- <em>Coalbed Methane</em>
<u>Major problems related to the use of </u><u>Tight Gas</u>
- When Hydrofluoric acid is used to release tight gas in reserves it potentially an issue simply because the substance is so dangerous. A spill or a leak could harm workers and pollute groundwater for uses.
<u>Major problems related to the use of </u><u>Shale Gas</u>
- Risk of ground and surface water contamination.
- Have impacts on air quality.
<u>Major problems related to the use of </u><u>Coalbed Methane</u>
- The development of coalbed methane will result to soil disturbance from construction of wells, roads, and the associated pipeline and electric power rights-of-ways.
- It has impact on wildlife.