<h3>
Answer:</h3>
The total concentration of ions in a 0.75 M solution of HCl is 1.5 M
That is; 0.75 M H⁺ and 0.75 M Cl⁻
<h3>
Explanation:</h3>
- Concentration or molarity is the number of moles of a compound or an ion contained in one liter of solution. It is measured in moles per liter (M).
- The concentration of ions making a compound is determined by the ratio of moles of the compound and the constituents ions.
- For instance, HCl dissociates to give H⁺ and Cl⁻
HCl(aq) → H⁺(aq) + Cl⁻(aq)
- Therefore, since the mole ratio between HCl and the constituent ions H⁺ and Cl⁻ is 1:1, then 0.75 M of HCl dissociates to give 0.75 M H⁺ and 0.75 m Cl⁻
- Hence the total concentration of ions in a 0.75 M solution of HCl is 1.5 M (0.75 M H⁺ and 0.75 M Cl⁻)
Answer:
Start with the number of grams of each element, given in the problem. the mass of each element = the percent given. Convert the mass of each element to moles using the molar mass from the periodic table. Divide each mole value by the smallest number of moles calculated.
By adding together the number of protons and neutrons and multiplying by 1 amu, you can calculate the mass of the atom.
LMBO, for science.
Answer:
<em>The increase in kinetic energy leads to leakage of water from the syringe. When the outside temperature is more than the liquid temperature, say the syringe is out in sunshine, then the liquid becomes slightly warmer.</em>
Answer:
1.44 x 10²⁵ ions of Na⁺
Explanation:
Given parameters:
Mass of NaCl = 1.4kg = 1400g
Unknown:
Number of ions of sodium = ?
Solution:
The compound NaCl in ionic form can be written as;
NaCl → Na⁺ + Cl⁻
In 1 mole of NaCl we have 1 mole of sodium ions
Now, let us find the number of moles in NaCl;
Number of moles =
Molar mass of NaCl = 23 + 35.5 = 58.5g/mol
Number of moles =
= 23.93mol
So;
Since 1 mole of NaCl gives 1 mole of Na⁺
In 23.93 mole of NaCl will give 23.93 mole of Na⁺
1 mole of a substance = 6.02 x 10²³ ions of a substance
23.93 mole of a substance = 6.02 x 10²³ x 23.93
= 1.44 x 10²⁵ ions of Na⁺