Answer:
Explanation:
Let the plastic rod extends from - L to + L .
consider a small length of dx on the rod on the positive x axis at distance x . charge on it = λ dx where λ is linear charge density .
It will create a field at point P on y -axis . Distance of point P
= √ x² + .15²
electric field at P due to small charged length
dE = k λ dx x / (x² + .15² )
Its component along Y - axis
= dE cosθ where θ is angle between direction of field dE and y axis
= dE x .15 / √ x² + .15²
= k λ dx .15 / (x² + .15² )³/²
If we consider the same strip along the x axis at the same position on negative x axis , same result will be found . It is to be noted that the component of field in perpendicular to y axis will cancel out each other . Now for electric field due to whole rod at point p , we shall have to integrate the above expression from - L to + L
E = ∫ k λ .15 / (x² + .15² )³/² dx
= k λ x L / .15 √( L² / 4 + .15² )
It depends on the type of interference.
For constructive interference, add the amplitudes to get |35 + 41| = 76 units.
For destructive, subtract them |35 - 41| = 6 units
Kinetic energy=1/2mv^2
=1/2(142*10^-3)(42.9)^2=130.6=131J
Answer:
v = 54.2 m / s
Explanation:
Let's use energy conservation for this problem.
Starting point Higher
Em₀ = U = m g h
Final point. Lower
= K = ½ m v²
Em₀ = Em_{f}
m g h = ½ m v²
v² = 2gh
v = √ 2gh
Let's calculate
v = √ (2 9.8 150)
v = 54.2 m / s
D. The table pushes up on the vase with the same amount of force as gravity pulling it down.