Answer:

Explanation:
Velocity of wave in stretched string is given by the formula

here we know that
T = 4 N
also we know that linear mass density is given as

so we have

now the tension in the string is double
so the velocity is given as


The change in the player's internal energy is -491.6 kJ. The number of nutritional calories is -117.44 kCal
For this process to take place, some of the basketball player's perspiration must escape from the skin. This is because sweating relies on a physical phenomenon known as the heat of vaporization.
The heat of vaporization refers to the amount of heat required to convert 1g of a liquid into a vapor without causing the liquid's temperature to increase.
From the given information,
- the work done on the basketball is dW = 2.43 × 10⁵ J
The amount of heat loss is represented by dQ.
where;
∴
Using the first law of thermodynamics:b
dU = dQ - dW
dU = -mL - dW
dU = -(0.110 kg × 2.26 × 10⁶ J/kg - 2.43 × 10⁵ J)
dU = -491.6 × 10³ J
dU = -491.6 kJ
The number of nutritional calories the player has converted to work and heat can be determined by using the relation:

dU = -117.44 kcal
Learn more about first law of thermodynamics here:
brainly.com/question/3808473?referrer=searchResults
The answer is pluto. just look it up
Answer: Reflection is the only process in which the wave does not continue moving forward.
Explanation:
Reflection is a process in which the direction of the wave changes when it is exposed to a bounce off barrier. Refraction can be defined as the change in the direction of the wave when the wave passes through one medium to another. Diffraction is a process in which the direction of the wave changes when the wave passes through a particular opening near the barrier.
Answer:
Vx = 10.9 m/s , Vy = 15.6 m/s
Explanation:
Given velocity V= 19 m/s
the angle 35 ° is taken from Y-axis so the angle with x-axis will be 90°-35° = 55°
θ = 55°
to Find Vx = ? and Vy= ?
Vx = V cos θ
Vx = 19 m/s × cos 55°
Vx = 10.9 m/s
Vx = V sin θ
Vy = 19 m/s × sin 55°
Vy = 15.6 m/s