1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Serjik [45]
3 years ago
15

How to find gravitational potential energy?

Physics
1 answer:
Nikitich [7]3 years ago
4 0
Mass x height x gravity
You might be interested in
How long will it take for a sound impulse to travel through a copper rod 25 kilometers long?
jekas [21]

By conducting exhaustive, high-intensity online research for about 15 seconds, I found a source that says the speed of sound in copper is 4600 m/s.  (You could easily have completed the same research project in about 1/3 of the time it took you to type and post the question here.)

Time it takes = (distance) / (speed)

Time = (25,000 meters) / (4600 m/s)

Time = (25 / 4.6) km-sec/km

<em>Time = 5.43 seconds </em>

4 0
3 years ago
What rhymes with leave
gayaneshka [121]
Peeve like a pet peeve
6 0
3 years ago
Read 2 more answers
6. The image to the right shows a moment of inertia
Trava [24]

The moment of inertia is the rotational analog of mass, and it is given by

the  product of mass and the square of the distance from the axis.

  • The moment of inertia changes as the position of the weight is changed, which indicates that; statement is incorrect

Reasons:

The weight on each arm that have adjustable positions can be considered as point masses.

The moment of inertia of a point mass is <em>I</em> = m·r²

Where;

m = The mass of the weight

r = The distance (position) from the center to which the weight is adjusted

Therefore;

The moment of inertia, <em>I </em>∝ r²

Which gives;

Doubling the distance from the center of rotation, increases the moment of inertia by factor of 4.

Therefore, the statement contradicts the relationship between the radius of rotation and moment of inertia.

Learn more about moment of inertia here:

brainly.com/question/4454769

7 0
2 years ago
Find the difference between two masses measured as 123.6 grams and 115.972 grams. Express the answer to the correct number of si
xxTIMURxx [149]

Answer:

The difference is 7.6 grams.

Explanation:

In mathematics the difference of two numbers is express as the subtraction between them:

         

a-b

So to find out the difference between the two measured masses, a will be represented by 123.6 grams since is the bigger number, and b by 115.972 grams.

Therefore, it is get:

123.6grams-115.972grams = 7.6grams

<u>Hence, the difference is 7.6 grams. </u>

The result of 7.628 will be expressed as 7.6 to have the correct number of significant figures.          

 

Notice how that can be express in units of kilograms too since there is 1000 gram in 1 kilogram:

7.6grams . \frac{1Kg}{1000grams} ⇒ 7.6x10^{-3}Kg

8 0
3 years ago
Initially, a 2.00-kg mass is whirling at the end of a string (in a circular path of radius 0.750 m) on a horizontal frictionless
drek231 [11]

Answer:

v_f = 15 \frac{m}{s}

Explanation:

We can solve this problem using conservation of angular momentum.

The angular momentum \vec{L} is

\vec{L}  = \vec{r} \times \vec{p}

where \vec{r} is the position and \vec{p} the linear momentum.

We also know that the torque is

\vec{\tau} = \frac{d\vec{L}}{dt}  = \frac{d}{dt} ( \vec{r} \times \vec{p} )

\vec{\tau} =  \frac{d}{dt}  \vec{r} \times \vec{p} +   \vec{r} \times \frac{d}{dt} \vec{p}

\vec{\tau} =  \vec{v} \times \vec{p} +   \vec{r} \times \vec{F}

but, as the linear momentum is \vec{p} = m \vec{v} this means that is parallel to the velocity, and the first term must equal zero

\vec{v} \times \vec{p}=0

so

\vec{\tau} =   \vec{r} \times \vec{F}

But, as the only horizontal force is the tension of the string, the force must be parallel to the vector position measured from the vertical rod, so

\vec{\tau}_{rod} =   0

this means, for the angular momentum measure from the rod:

\frac{d\vec{L}_{rod}}{dt} =   0

that means :

\vec{L}_{rod} = constant

So, the magnitude of initial angular momentum is :

| \vec{L}_{rod_i} | = |\vec{r}_i||\vec{p}_i| cos(\theta)

but the angle is 90°, so:

| \vec{L}_{rod_i} | = |\vec{r}_i||\vec{p}_i|

| \vec{L}_{rod_i} | = r_i * m * v_i

We know that the distance to the rod is 0.750 m, the mass 2.00 kg and the speed 5 m/s, so:

| \vec{L}_{rod_i} | = 0.750 \ m \ 2.00 \ kg \ 5 \ \frac{m}{s}

| \vec{L}_{rod_i} | = 7.5 \frac{kg m^2}{s}

For our final angular momentum we have:

| \vec{L}_{rod_f} | = r_f * m * v_f

and the radius is 0.250 m and the mass is 2.00 kg

| \vec{L}_{rod_f} | = 0.250 m * 2.00 kg * v_f

but, as the angular momentum is constant, this must be equal to the initial angular momentum

7.5 \frac{kg m^2}{s} = 0.250 m * 2.00 kg * v_f

v_f = \frac{7.5 \frac{kg m^2}{s}}{ 0.250 m * 2.00 kg}

v_f = 15 \frac{m}{s}

8 0
3 years ago
Other questions:
  • The Bohr model was determined ultimately to be flawed. Knowing that "opposites attract (and 'likes' repel)," can you think of an
    12·1 answer
  • The specific resistance of wire​
    12·1 answer
  • What would be the weight of a 59.1-kg astronaut on a planet with the same density as Earth and having twice Earth's radius?
    14·1 answer
  • A note on a piano vibrates 262 time per second. What is the period of the wave
    13·1 answer
  • When a space shuttle was launched, the astronauts onboard experienced an acceleration of 29.0 m/s2 . If one of the astronauts ha
    13·1 answer
  • 1. If all four switches below are turned on, which light bulb will light up? (W is wood, S is silver, and Yis yarn.)
    8·1 answer
  • (c) A solid weights 64N in air and 48N when totally immersed in a liquid 0.8g/cm3.
    8·1 answer
  • How do greenhouse gasses help warm the planet?
    5·1 answer
  • Please help me with this,
    12·1 answer
  • This is the third time I’m asking, please, On a wet road, is a higher coefficient of friction on the tires safer or a lower one
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!