1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
diamong [38]
2 years ago
13

At the surface, atmospheric pressure is 1.013 × 10^5 Pa. People can normally snorkel down to a depth of roughly one meter. What

is the additional pressure on the air in their lungs? (Assume they are diving in fresh water.)
Please correctly explain the answer
Physics
1 answer:
natulia [17]2 years ago
5 0

Answer:

1.01 × 10⁵ Pa  

Explanation:

At the surface, atmospheric pressure is 1.013 × 10⁵ Pa.

We need to find the total pressure on the air in the lungs of a person to a depth of 1 meter.

Pressure at a depth is given by :

P=\rho gh

Where

\rho is the density of air, \rho=1.225\ kg/m^3

So,

P=1.225\times 9.8\times 1\\\\=12\ Pa

Total pressure, P = Atmospheric pressure + 12 Pa

= 1.013 × 10⁵ Pa + 12 Pa

= 1.01 × 10⁵ Pa

Hence, the total pressure is 1.01 × 10⁵ Pa.

You might be interested in
The rocket's acceleration has components \(a_{x}(t)= \alpha t^{2}\) and \(a_{y}(t)= \beta - \gamma t\), where \(\alpha = 2.50 {\
lbvjy [14]
 it is just a matter of integration and using initial conditions since in general dv/dt = a it implies v = integral a dt 
v(t)_x = integral a_{x}(t) dt = alpha t^3/3 + c the integration constant c can be found out since we know v(t)_x at t =0 is v_{0x} so substitute this in the equation to get v(t)_x = alpha t^3 / 3 + v_{0x} 
similarly v(t)_y = integral a_{y}(t) dt = integral beta - gamma t dt = beta t - gamma t^2 / 2 + c this constant c use at t = 0 v(t)_y = v_{0y} v(t)_y = beta t - gamma t^2 / 2 + v_{0y} 
so the velocity vector as a function of time vec{v}(t) in terms of components as[ alpha t^3 / 3 + v_{0x} , beta t - gamma t^2 / 2 + v_{0y} ] 
similarly you should integrate to find position vector since dr/dt = v r = integral of v dt 
r(t)_x = alpha t^4 / 12 + + v_{0x}t + c let us assume the initial position vector is at origin so x and y initial position vector is zero and hence c = 0 in both cases 
r(t)_y = beta t^2/2 - gamma t^3/6 + v_{0y} t + c here c = 0 since it is at 0 when t = 0 we assume 
r(t)_vec = [ r(t)_x , r(t)_y ] = [ alpha t^4 / 12 + + v_{0x}t , beta t^2/2 - gamma t^3/6 + v_{0y} t ] 
5 0
3 years ago
Why does the speed of sound depend on air temperature?
IRISSAK [1]
<span>The speed of sound is dependent on how close together the molecules of the transmitting medium is.</span>
4 0
3 years ago
Read 2 more answers
If you are at latitude 43 degrees north of Earth's equator, what is the angular distance (in degrees) from your zenith to the no
kirill115 [55]

Answer:

Your zenith is 43 N of 90 deg (equator)

Thus, your zenith is 90 - 43 = 47 deg

(At the N pole your zenith would be 0 deg from the N pole)

8 0
2 years ago
Before starting this problem, review Conceptual Example 3 in your text. Suppose that the hail described there comes straight dow
bulgar [2K]

Answer:

0.9 N

Explanation:

The force exerted on an object is related to its change in momentum by:

F=\frac{\Delta p}{\Delta t}

where

F is the force exerted

\Delta p is the change in momentum

\Delta t is the time interval

The change in momentum can be rewritten as

\Delta p = m(v-u)

where

m is the mass

u is the initial velocity

v is the final velocity

So the formula can be rewritten as

F=\frac{m(v-u)}{\Delta t}

In this problem we have:

\frac{m}{\Delta t}=0.030 kg/s is the mass rate

u=-15 m/s is the initial velocity

v=+15 m/s is the final velocity

Therefore, the force exerted by the hail on the roof is:

F=(0.030)(+15-(-15))=0.9 N

6 0
3 years ago
The length of a wire 2.00 m is measured as 2.02m. What is the percentage error in the measurement?
n200080 [17]

Answer:

1%

Explanation:

Percent error can be found by dividing the absolute error (difference between measure and actual value) by the actual value, then multiplying by 100.

Percent Error=\frac{V_{measured}- V_{true} } {V_{true}} *100

The measured value is 2.02 meters and the actual value is 2.00 meters.

V_{measured}=2.02\\\\V_{true}=2.00

Percent Error=\frac{2.02-2.00}{2.00} *100

First, evaluate the fraction. Subtract 2.00 from 2.02

Percent Error=\frac{0.02}{2.00}*100

Next, divide 0.02 by 2.00

PercentError=0.01 *100

Finally, multiply 0.01 and 100.

Percent  Error=1\\Percent  Error= 1 \%

The percent error is 1%.

6 0
3 years ago
Other questions:
  • A friction force of 280 N exists between a cart and the path. If the force of reaction is 766 N, what is the minimum action forc
    7·1 answer
  • Which of the angles shown in this picture is the angle of incidence?<br> A<br> B
    8·2 answers
  • According to Newton´s second law of motion, what does an object with more mass require? Question 8 options:
    12·2 answers
  • What is the most precise method for recording data points during an experiment? A. plotting the data point on an X-Y graph B. cr
    14·2 answers
  • Which galaxy is the most stretched out?<br>​
    9·2 answers
  • Which portion of the electromagnetic spectrum is used to identify fluorescent minerals?
    5·1 answer
  • An electromagnetic wave traveling through space encounters an electron sitting at rest. Upon being hit by the wave, which way wi
    12·1 answer
  • Que cuerpos celestes observó laika durante su viaje
    11·1 answer
  • A physics major is cooking breakfast when he notices that the frictional force between the steel spatula and the Teflon frying p
    9·1 answer
  • A block with a mass of 6.0 kg is
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!