Answer:
In the first law, an object will not change its motion unless a force acts on it. In the second law, the force on an object is equal to its mass times its acceleration. In the third law, when two objects interact, they apply forces to each other of equal magnitude and opposite direction.
Explanation:
During an exothermic reaction; light and heat are released into the environment.
An exothermic reaction is one in which heat is released to the environment. This heat can be physically observed sometimes like in an a combustion reaction.
In an exothermic reaction, the enthalpy of the reactants is greater than the enthalpy of the products.
This heat lost is sometimes felt as the hotness of the vessel in which the reaction has taken place.
In conclusion, light and heat are released into the environment in an exothermic reaction.
Learn more: brainly.com/question/4345448
Answer:
A practical siphon, operating at typical atmospheric pressures and tube heights, works because gravity pulling down on the taller column of liquid leaves reduced pressure at the top of the siphon (formally, hydrostatic pressure when the liquid is not moving).
I hope it's helpful!
Answer:
k = 9.6 x 10^5 N/m or 9.6 kN/m
Explanation:
First, we need to use the expression to calculate the spring constant which is:
w² = k/m
Solving for k:
k = w²*m
To get the angular velocity:
w = 2πf
The problem is giving the linear velocity of the car which is 5.7 m/s. With this we can calculate the frequency of the car:
f = V/x
f = 5.7 / 4.9 = 1.16 Hz
Now the angular velocity:
w = 2π*1.16
w = 7.29 rad/s
Finally, solving for k:
k = (7.29)² * 1800
k = 95,659.38 N/m
In two significant figures it'll ve 9.6 kN/m