They will both hit the ground at the same time due to gravity.
that means they took the same time to travel the distance to the ground
however, the ball traveled farther
speed=distance (or displacement) divided by time
so the greater the distance, the greater the speed
the ball traveled faster in the same time so it traveled faster
answer is ball
A. The angle at which the arrow must be released to hit the bull's-eye is 20.7 °
B. The arrow will go over the branch.
<h3>A. How to determine the angle</h3>
- Range (R) = 74 m
- Initial velocity (u) = 33 m/s
- Acceleration due to gravity (g) = 9.8 m/s²
- Angle (θ) = ?
R = u²Sine(2θ) / g
74 = 33² × Sine (2θ) / 9.8
Cross multiply
74 × 9.8 = 33² × Sine (2θ)
725.2 = 1098 × Sine (2θ)
Divide both sides by 1098
Sine (2θ) = 725.2 / 1098
Sine (2θ) = 0.6605
Take the inverse of sine
2θ = Sine⁻¹ 0.6605
2θ = 41.3
Divide both sides by 2
θ = 41.3 / 2
θ = 20.7 °
<h3>B. How to determine if the arrow will go over or under the branch</h3>
To determine if the arrow will go over or under the branch situated mid way, we shall determine the maximum height attained by the arrow. This can be obtained as follow:
- Initial velocity (u) = 33 m/s
- Acceleration due to gravity (g) = 9.8 m/s²
- Angle (θ) = 20.7 °
- Maximum height (H) = ?
H = u²Sine²θ / 2g
H = [33² × (Sine 20.7)²] / (2 ×9.8)
H = 6.94 m
Thus, the maximum height attained by the arrow is 6.94 m which is greater than the height of the branch (i.e 3.50 m).
Therefore, we can conclude that the arrow will go over the branch
Learn more about projectile motion:
brainly.com/question/20326485
#SPJ1
Answer:
Only magnetic field present
Explanation:
Since, the positively charged particle does not speed up or slow down, but it does deflect in the downward direction. This means only magnetic field is present.
This is because electric field changes the velocity and magnetic field changes the direction.
The magnetic force F is given by
F = qvBsinθ
Where, q = charge magnitude, v = velocity of charge, B = strength of magnetic field. and θ =the angle between the directions of v and B.
Answer:
The diaphragm.
Explanation:
A diaphragm is a thin non transparent structure with an aperture at its center. Aperture is the opening in a lens through which light passes to enter the camera. Diaphragm controls the passage of light through specimen. It stops the passage of light except for the light passing through aperture. It also limits the brightness of light reaching the focal plane.
The diaphragm is placed close to the lens, where objects are defocused to the maximum in order to pass every ray from the object through the lens. Diaphragm discards some of those rays but allows multiple rays to move through to produce an image. This means that the size of the aperture controls the amount of light that passes through the lens. The center of the aperture coincides with optical axis of the lens. Iris diaphragm is an example. It is used in modern cameras.