<h2>
contains both covalent and ionic bonds.</h2>
Explanation:
A covalent bond is formed when an element shares its valence electron with another element. This bond is formed between two non metals.
An ionic bond is formed when an element completely transfers its valence electron to another element. The element which donates the electron is known as electropositive element or the metal and the element which accepts the electrons is known as electronegative element or non metal.
a.
contain covalent bonds as they are made up of non metals only.
b.
contain ionic bonds as they are made up of sodium metal and fluorine non metal.
c.
contain covalent bonds as they are made up of non metals only.
d.
contain ionic bonds between
and
and covalent between N and H in 
Learn more about ionic and covalent bonds
brainly.com/question/13212100
brainly.com/question/2877158
Answer:
Hydrogen bonding, interaction involving a hydrogen atom located between a pair of other atoms having a high affinity for electrons; such a bond is weaker than an ionic bond or covalent bond but stronger than van der Waals forces. Hydrogen bonds can exist between atoms in different molecules or in parts of the same molecule.
Explanation:
Answer:
The nitrogens are both sp3 hybridized. Their bonds are formed by sp overlaps. The carbon and oxygen are sp2 hybridized. The double bond with oxygen is produced by a sp2 overlap to form the sigma component and a probital overlap to form the pi component. The bonds with hydrogen are formed by sp2 overlaps.
Explanation:
Answer:
When energy is removed in liquid water then it will solidify since heat is given off by the system to its surrounding. It is an exothermic process where the enthalpy decreases since heat is taken off. So liquid water becomes ice in an exothermic process.
Explanation:
<u>Answer:</u> The value of
is 0.136 and is reactant favored.
<u>Explanation:</u>
Equilibrium constant in terms of concentration is defined as the ratio of concentration of products to the concentration of reactants each raised to the power their stoichiometric ratios. It is expressed as 
For the chemical reaction between carbon monoxide and hydrogen follows the equation:

The expression for the
is given as:
![K_{c}=\frac{[NH_3]^2}{[N_2][H_2]^3}](https://tex.z-dn.net/?f=K_%7Bc%7D%3D%5Cfrac%7B%5BNH_3%5D%5E2%7D%7B%5BN_2%5D%5BH_2%5D%5E3%7D)
We are given:
![[NH_3]=0.25M](https://tex.z-dn.net/?f=%5BNH_3%5D%3D0.25M)
![[H_2]=0.75M](https://tex.z-dn.net/?f=%5BH_2%5D%3D0.75M)
![[N_2]=1.1M](https://tex.z-dn.net/?f=%5BN_2%5D%3D1.1M)
Putting values in above equation, we get:


There are 3 conditions:
- When
; the reaction is product favored. - When
; the reaction is reactant favored. - When
; the reaction is in equilibrium.
For the given reaction, the value of
is less than 1. Thus, the reaction is reactant favored.
Hence, the value of
is 0.136 and is reactant favored.