Answer:
625=275
240=x
625x=275×240
625x=66000
x=66000/625
x=105 .6
Explanation:
If 625°C gives us 275KPa then 240°C will give us the the sum of 275×240 divided by 625
<span> A compound <span>lens microscope. </span></span>
Answer:
1) The limiting reactant is N₂ because it is present with the lower no. of moles than H₂.
2) The amount (in grams) of excess reactant H₂ = 4.39 g.
Explanation:
- Firstly, we should write the balanced equation of the reaction:
<em>N₂ + 3H₂ → 2NH₃.</em>
<em>1) To determine the limiting reactant of the reaction:</em>
- From the stichiometry of the balanced equation, 1.0 mole of N₂ reacts with 3.0 moles of H₂ to produce 2.0 moles of NH₃.
- This means that <em>N₂ reacts with H₂ with a ratio of (1:3).</em>
- We need to calculate the no. of moles (n) of N₂ (5.23 g) and H₂ (5.52 g) using the relation:<em> n = mass / molar mass.</em>
The no. of moles of N₂ in (5.23 g) = mass / molar mass = (5.23 g) / (28.00 g/mol) = 0.1868 mol.
The no. of moles of H₂ (5.52 g) = mass / molar mass = (5.52 g) / (2.015 g/mol) = 2.74 mol.
- From the stichiometry, N₂ reacts with H₂ with a ratio of (1:3).
The ratio of the reactants of N₂ (5.23 g, 0.1868 mol) to H₂ (5.52 g, 2.74 mol) is (1:14.67).
∴ The limiting reactant is N₂ because it is present with the lower no. of moles than H₂.
0.1868 mol of N₂ react completely with 0.5604 mol of H₂ and the remaining of H₂ is in excess.
<em>2) To determine the amount (in grams) of excess reactant of the reaction:</em>
- As showed in the part 1, The limiting reactant is N₂ because it is present with the lower no. of moles than H₂.
- Also, 0.1868 mol of N₂ react completely with 0.5604 mol of H₂ and the remaining of H₂ is in excess.
- The no. of moles are in excess of H₂ = 2.74 mol - 0.5604 mol (reacted with N₂) = 2.1796 mol.
- ∴ The amount (in grams) of excess reactant H₂ = n (excess moles) x molar mass = (2.1796 mol)((2.015 g/mol) = 4.39 g.
The answer is "filtration"
Filtration is used to seprate a solid from a liquid in which it is suspended. Filtration is also used to separate a substance from a mixture because one is insoluble in the solvent and the other is solube. The separation is due to particle size.
I hope this helps.
Missing question:
1) the rate of dissolving reaches zero
<span>2) the rate of crystallization reaches zero </span>
3) the rate of dissolving is zero and the rate of crystallization is greater than zero.
<span>4) both the rate of dissolving and the rate of crystallization are equal and greater than zero.
</span>
Answer is: 4) both the rate of dissolving and the rate of crystallization are equal and greater than zero.
Silver chloride (AgCl) dissolves and form silver and chlorine ions, in the same time silver and chlorine ions crystallizate and form solid salt silver chloride.
In equilibrium rates of dissolvinf and crysallization and concentration of ions do not change.