Answer:
The object A will be having the greater density compared to object B.
Explanation:
It is known that density of any object is defined as the mass of any object occupying a given volume. So the ratio of mass and volume will help to determine the density of any object. 
From the above equation, it can be seen that the density of any object is directly proportional to the mass of the object and inversely proportional to the volume occupied by the object.
So in the present context, the mass of objects A and B are same and it is 100 g. Thus, the density of object A and object B will be influenced by their volume. As it is given that the volume of object A is 50 cm3 and object B is 100 cm3, then depending upon the relationship of volume and density, the density of both the objects can be determined. As the object with higher volume will be having lesser density as volume is inversely proportional to density. Thus, in the given case the volume of object B is greater than object A and so the object A will be having greater density compared to object B.
Answer:
Calcium
Explanation:
It has 20 electrons to start, loses two to become Ca 2+, and is left with 18 electrons
9.5 x 10^-4 is the answerZ
948 or 9.48 x 10^2
There are two sets of rules for significant figures
• One set for addition and subtraction
• Another set for multiplication and division
You used the set for multiplication and division.
This problem involves addition and subtraction, and the rule is
The number of places after the decimal point in the answer must be <em>no greater than the number of decimal places in every term</em> in the sum.
Thus, we have
78.9
+890.43
-21.
= 948.33
The "21" term has the fewest digits after the decimal point (none), so the answer must have no digits after the decimal point.
To the correct answer is 948 = 9.48 x 10^2. It has three significant figures.
<span>If the concentration of H⁺ ions will decrease then the concentration of OH⁺ ions will increase.</span>