Hey there!
C₉H₂O + O₂ → CO₂ + H₂O
First let's balance the C.
There's 9 on the left and 1 on the right. So, let's add a coefficient of 9 in front of CO₂.
C₉H₂O + O₂ → 9CO₂ + H₂O
Next let's balance the H.
There's 2 on the left and 2 on the right. This means it's already balanced.
C₉H₂O + O₂ → 9CO₂ + H₂O
Lastly, let's balance the O.
There's 3 on the left and 19 on the right. So, let's add a coefficient of 9 in front of O₂.
C₉H₂O + 9O₂ → 9CO₂ + H₂O
This is our final balanced equation.
Hope this helps!
The thermal decomposition of calcium carbonate will produce 14 g of calcium oxide. The stoichiometric ratio of calcium carbonate to calcium oxide is 1:1, therefore the number of moles of calcium carbonate decomposed is equal to the number of moles of calcium oxide formed.
Further Explanation:
To solve this problem, follow the steps below:
- Write the balanced chemical equation for the given reaction.
- Convert the mass of calcium carbonate into moles.
- Determine the number of moles of calcium oxide formed by using the stoichiometric ratio for calcium oxide and calcium carbonate based on the coefficient of the chemical equation.
- Convert the number of moles of calcium oxide into mass.
Solving the given problem using the steps above:
STEP 1: The balanced chemical equation for the given reaction is:

STEP 2: Convert the mass of calcium carbonate into moles using the molar mass of calcium carbonate.

STEP 3: Use the stoichiometric ratio to determine the number of moles of CaO formed.
For every mole of calcium carbonate decomposed, one more of a calcium oxide is formed. Therefore,

STEP 4: Convert the moles of CaO into mass of CaO using its molar mass.

Since there are only 2 significant figures in the given, the final answer must have the same number of significant figures.
Therefore,

Learn More
- Learn more about stoichiometry brainly.com/question/12979299
- Learn more about mole conversion brainly.com/question/12972204
- Learn more about limiting reactants brainly.com/question/12979491
Keywords: thermal decomposition, stoichiometry
They discovered this since S waves don’t travel through the earth but P waves do. P waves tend to travel faster than S waves in speed, 1&14km/s vs 1&8km/s
Answer:
pKa = 4.89.
Explanation:
We can solve this problem by using the <em>Henderson-Hasselbach equation</em>, which states:
pH = pKa + log ![\frac{[A^-]}{[HA]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BA%5E-%5D%7D%7B%5BHA%5D%7D)
In this case [A⁻] is the concentration of sodium benzoate and [HA] is the concentration of benzoic acid.
We <u>input the given data</u>:
4.63 = pKa + log 
And <u>solve for pKa</u>:
pKa = 4.89