Answer:
Molecularity of the rate determining step = 2
Explanation:
Step 1 (slow): H₂O₂ + I⁻ -----> H₂O + OI⁻
Step 2 (fast): H₂O₂ + OI⁻ -----> H₂O + O₂ + I⁻
The rate determining step in a reaction mechanism is also considered as slowest step.
Slowest step is also considered its highest activation energy in energy profile diagram.
In this case intermediate (IO⁻) is formed.
Step 1 considered as a slowest step.
So, Rate = K [H₂O₂][I⁻]
Molecularity = 2
Because chloride is more reactive than hydrogen.
Answer:
It should b KNO3
Explanation:
one Potassium (K) and three Nitrite (NO3)
The correct answer from the choices given is the third option. Covalent compounds have low boiling points. Also, their melting points are low. Covalent bonds have relatively low attractions which results to these properties. The bonds are easily broken by taking energy or adding energy.
Answer:
The mean free path = 2.16*10^-6 m
Explanation:
<u>Given:</u>
Pressure of gas P = 100 kPa
Temperature T = 300 K
collision cross section, σ = 2.0*10^-20 m2
Boltzmann constant, k = 1.38*10^-23 J/K
<u>To determine:</u>
The mean free path, λ
<u>Calculation:</u>
The mean free path is related to the collision cross section by the following equation:

where n = number density

Substituting for P, k and T in equation (2) gives:

Next, substituting for n and σ in equation (1) gives:
