Answer:
A) An organism with favorable genetic variation will tend to survive and breed successfully.
Explanation:
In an ecosystem, organisms that don't have the best genetic variation will die off, leaving the more genetic favored ones to survive and become better as a whole.
Answer:
The Laws of Badminton
A match consists of the best of 3 games of 21 points.
Every time there is a serve – there is a point scored.
The side winning a rally adds a point to its score.
At 20 all, the side which gains a 2 point lead first, wins that game.
At 29 all, the side scoring the 30th point, wins that game.
It is in its ground state when its orbital electron is at its lowest energy amount.
Answer:
a)1815Joules b) 185Joules
Explanation:
Hooke's law states that the extension of a material is directly proportional to the applied force provided that the elastic limit is not exceeded. Mathematically;
F = ke where;
F is the applied force
k is the elastic constant
e is the extension of the material
From the formula, k = F/e
F1/e1 = F2/e2
If a force of 60N causes an extension of 0.5m of the string from its equilibrium position, the elastic constant of the spring will be ;
k = 60/0.5
k = 120N/m
a) To get the work done in stretching the spring 5.5m from its position,
Work done by the spring = 1/2ke²
Given k = 120N/m, e = 5.5m
Work done = 1/2×120×5.5²
Work done = 60× 5.5²
Work done = 1815Joules
b) work done in compressing the spring 1.5m from its equilibrium position will be gotten using the same formula;
Work done = 1/2ke²
Work done =1/2× 120×1.5²
Works done = 60×1.5²
Work done = 135Joules
Answer:
t = 1.098*RC
Explanation:
In order to calculate the time that the capacitor takes to reach 2/3 of its maximum charge, you use the following formula for the charge of the capacitor:
(1)
Qmax: maximum charge capacity of the capacitor
t: time
R: resistor of the circuit
C: capacitance of the circuit
When the capacitor has 2/3 of its maximum charge, you have that
Q=(2/3)Qmax
You replace the previous expression for Q in the equation (1), and use properties of logarithms to solve for t:
![Q=\frac{2}{3}Q_{max}=Q_{max}[1-e^{-\frac{t}{RC}}]\\\\\frac{2}{3}=1-e^{-\frac{t}{RC}}\\\\e^{-\frac{t}{RC}}=\frac{1}{3}\\\\-\frac{t}{RC}=ln(\frac{1}{3})\\\\t=-RCln(\frac{1}{3})=1.098RC](https://tex.z-dn.net/?f=Q%3D%5Cfrac%7B2%7D%7B3%7DQ_%7Bmax%7D%3DQ_%7Bmax%7D%5B1-e%5E%7B-%5Cfrac%7Bt%7D%7BRC%7D%7D%5D%5C%5C%5C%5C%5Cfrac%7B2%7D%7B3%7D%3D1-e%5E%7B-%5Cfrac%7Bt%7D%7BRC%7D%7D%5C%5C%5C%5Ce%5E%7B-%5Cfrac%7Bt%7D%7BRC%7D%7D%3D%5Cfrac%7B1%7D%7B3%7D%5C%5C%5C%5C-%5Cfrac%7Bt%7D%7BRC%7D%3Dln%28%5Cfrac%7B1%7D%7B3%7D%29%5C%5C%5C%5Ct%3D-RCln%28%5Cfrac%7B1%7D%7B3%7D%29%3D1.098RC)
The charge in the capacitor reaches 2/3 of its maximum charge in a time equal to 1.098RC