Answer:
54.17volts
Explanation:
Induced emf in a coil placed in a magnetic field can be expressed as E = N¶/t where
N is the number of turns = 150turns
¶ is the magnetic flux = magnetic field strength (B) × area(A)
¶ = BA
B = 0.65T
A = 1.0m²
t is the time =1.8s
Substituting this value in the formula
E = NBA/t
E = 150×0.65×1.0/1.8
E = 54.17Volts
The induced emf in the coil is 54.17Volts
(89000/102000)×100
=87.25%
(92000/104000)×100
=88.46%
efficiency is (output/input)×100
if u get confused which way input and output should go, remember the smaller value is always output and it's above in the fraction, then only it's possible to get a efficiency lower than 100.
Answer:
the tangential velocity of the student is 4.89 m/s.
Explanation:
Given;
the radius of the circular path, r = 3.5 m
duration of the motion, t = 4.5 s
let the student's tangential velocity = v
The tangential velocity of the student is calculated as follows;

Therefore, the tangential velocity of the student is 4.89 m/s.
Initial velocity (u) = 2 m/s
Acceleration (a) = 10 m/s^2
Time taken (t) = 4 s
Let the final velocity be v.
By using the equation,
v = u + at, we get
or, v = 2 + 10 × 4
or, v = 2 + 40
or, v = 42
The final velocity is 42 m/s.