348.34 m/s. When Superman reaches the train, his final velocity will be 348.34 m/s.
To solve this problem, we are going to use the kinematics equations for constant aceleration. The key for this problem are the equations
and
where
is distance,
is the initial velocity,
is the final velocity,
is time, and
is aceleration.
Superman's initial velocity is
, and he will have to cover a distance d = 850m in a time t = 4.22s. Since we know
,
and
, we have to find the aceleration
in order to find
.
From the equation
we have to clear
, getting the equation as follows:
.
Substituting the values:

To find
we use the equation
.
Substituting the values:

Answer:
15.34 kVA
Explanation:
A motor is a device that converts electrical energy into mechanical energy. It takes in electrical energy at the input and produce torque (motion) at the output.
The power consumption for a three phase motor is the product of voltage and current and √3. The √3 is because it is a three phase supply.
Hence Power (P) =√3 × voltage (V) × current (I)
P = √3 × V × I
Given that voltage (V) = 460 V, current (I) = 17 A. Hence:
P = √3 × V × I = √3 × 460 × 17 = 13544.64 VA
But 1000 VA = 1 kVA. Hence:

The momentum p of a moving particle is the product between its mass, m, and tis velocity, v:

In our problem, we know

and

, and using the relationship mentioned above, we can find the mass m of the particle:
The resistance of the lamp plugged in to a standard wall outlet with a current of 0.5 amps is 240 Ω (ohms)
Explanation:
In the United States Of America the standard voltage is 120 v and their frequency is 60 Hz
Standard wall outlet voltage is 120 V
The current in the lamp is 0.5 ampere
Resistance (R) = V/ I
= 120/0.5
= 240Ω (ohms)
Thus the resistance of the lamp plugged in to a standard wall outlet with a current of 0.5 amps is 240 Ω (ohms).
Answer:
Explanation:
Newton's Gravitation Law

where G is a constant, M and M the masses e d the distance betwen masses.
