A = 59.35cm
B = 196.56g
C = 74.65g
<u>Explanation:</u>
We know,

and L = x+y
1.
Total length, L = 100cm
Weight of Beam, W = 71.8g
Center of mass, x = 49.2cm
Added weight, F = 240g
Position weight placed from fulcrum, y = ?

Therefore, position weight placed from fulcrum is 59.35cm
2.
Total length, L = 100cm
Center of mass, x = 47.8 cm
Added weight, F = 180g
Position weight placed from fulcrum, y = 12.4cm
Weight of Beam, W = ?

Therefore, weight of the beam is 196.56g
3.
Total length, L = 100cm
Center of mass, x = 50.8 cm
Position weight placed from fulcrum, y = 9.8cm
Weight of Beam, W = 72.3g
Added weight, F = ?

Therefore, Added weight F is 74.65g
A = 59.35cm
B = 196.56g
C = 74.65g
Answer:
Spin a coil of wire inside a magnetic field or move a magnet inside a coil of wire.
Explanation:
This is according to Faraday's law of electromagnetic induction.
Answer:
The force applied on one wheel during braking = 6.8 lb
Explanation:
Area of the piston (A) = 0.4 
Force applied on the piston(F) = 6.4 lb
Pressure on the piston (P) = 
⇒ P = 
⇒ P = 16 
This is the pressure inside the cylinder.
Let force applied on the brake pad = 
Area of the brake pad (
)= 1.7 
Thus the pressure on the brake pad (
) = 
When brake is applied on the vehicle the pressure on the piston is equal to pressure on the brake pad.
⇒ P = 
⇒ 16 = 
⇒
= 16 × 
Put the value of
we get
⇒
= 16 × 1.7
⇒
= 27.2 lb
This the total force applied during braking.
The force applied on one wheel =
=
= 6.8 lb
⇒ The force applied on one wheel during braking.
Answer:
The object will continue moving at 5 mph ( b )
Explanation:
For an object moving at a constant speed, the forces acting on it cancels each other out, or there are no external forces atall. hence its net force = 0 N . so the true statement is that the object will continue moving at its constant speed of 5 mph because its net force = 0 N