What are the options for A,B,C,D? There’s arrows
Answer:

Explanation:
The electric force between two charged objects is given by:

where:
k is the Coulomb's constant
q1 and q2 are the charges of the two objects
r is their separation
In this problem:
q1 = 2.0 C
q2 = 1.0 C
r = 2 m
So, the electric force is

Answer:Stirring.
Explanation:Stirring a solute into a solvent speeds up the rate of dissolving because it helps distribute the solute particles throughout the solvent. For example, when you add sugar to iced tea and then stir the tea, the sugar will dissolve faster.
Answer:
The voltage across the capacitor is 1.57 V.
Explanation:
Given that,
Number of turns = 10
Diameter = 1.0 cm
Resistance = 0.50 Ω
Capacitor = 1.0μ F
Magnetic field = 1.0 mT
We need to calculate the flux
Using formula of flux

Put the value into the formula


We need to calculate the induced emf
Using formula of induced emf

Put the value into the formula

Put the value of emf from ohm's law





We know that,


We need to calculate the voltage across the capacitor
Using formula of charge


Put the value into the formula


Hence, The voltage across the capacitor is 1.57 V.
Answer:
Moving the magnet away from the center of the loop with its south pole facing the center of the loop.
Explanation:
Electromagnetic induction is due to a rapidly changing magnetic field, or loop area. The poles of the magnet induce current in the loop but in the opposite direction, depending on the direction of their relative motion. An approaching north pole will induce an anticlockwise current in the loop, while an approaching south pole will do the reverse. To get the galvanometer to flicker in the same direction as of that when the north pole was approaching, we move the magnet away from the center of the loop with its south pole facing the center of the loop.