Answer:
From what I see, it's saying that every minute, the ant can move 30 meters. So how many meter would it move in 45 minutes?
30 meters = 1 min
x meters = 45 min
1 min x 45 = 45 min
30 meters x 45 = 1,350 meters
So, I believe the answer would be 1,350 meters.
hope this helps. :>
Answer:
fundamental frequency of pipe will be equal to 74 Hz
Explanation:
We have given for a particular organ pipe two adjacent frequency are 296 Hz and 370 Hz
Speed of the sound in air is 343 m/sec
We have to find the fundamental frequency for the pipe
Fundamental frequency will be equal to difference of the two adjacent frequency
So fundamental frequency = 370 - 296 = 74 Hz
So fundamental frequency of pipe will be equal to 74 Hz
Answer:
1.170*10^-3 m
3.23*10^-32 m
Explanation:
To solve this, we apply Heisenberg's uncertainty principle.
the principle states that, "if we know everything about where a particle is located, then we know nothing about its momentum, and vice versa." it also can be interpreted as "if the uncertainty of the position is small, then the uncertainty of the momentum is large, and vice versa"
Δp * Δx = h/4π
m(e).Δv * Δx = h/4π
If we make Δx the subject of formula, by rearranging, we have
Δx = h / 4π * m(e).Δv
on substituting the values, we have
for the electron
Δx = (6.63*10^-34) / 4 * 3.142 * 9.11*10^-31 * 4.95*10^-2
Δx = 6.63*10^-34 / 5.67*10^-31
Δx = 1.170*10^-3 m
for the bullet
Δx = (6.63*10^-34) / 4 * 3.142 * 0.033*10^-31 * 4.95*10^-2
Δx = 6.63*10^-34 / 0.021
Δx = 3.23*10^-32 m
therefore, we can say that the lower limits are 1.170*10^-3 m for the electron and 3.23*10^-32 for the bullet
Answer:

Explanation:
From the concept of fluids mechanics we know that if a tank has a hole at the bottom, the equation that we need to use is:

Since we know gravity and its hight

Step-#1:
Ignore the wire on the right.
Find the strength and direction of the magnetic field at P,
caused by the wire on the left, 0.04m away, carrying 5.0A
of current upward.
Write it down.
Step #2:
Now, ignore the wire on the left.
Find the strength and direction of the magnetic field at P,
caused by the wire on the right, 0.04m away, carrying 8.0A
of current downward.
Write it down.
Step #3:
Take the two sets of magnitude and direction that you wrote down
and ADD them.
The total magnetic field at P is the SUM of (the field due to the left wire)
PLUS (the field due to the right wire).
So just calculate them separately, then addum up.