Answer:
1.492*10^14 electrons
Explanation:
Since we know the mass of each balloon and the acceleration, let’s use the following equation to determine the total force of attraction for each balloon.
F = m * a = 0.012 * 1.9 = 0.0228 N
Gravitational forces are negligible
Charge force = 9 * 10^9 * q * q ÷ 225
= 9 * 10^9 * q^2 ÷ 225 = 0.0228
q^2 = 5.13 ÷ 9 * 10^9
q = 2.387 *10^-5
This is approximately 2.387 *10^-5 coulomb of charge. The charge of one electron is 1.6 * 10^-19 C
To determine the number of electrons, divide the charge by this number.
N =2.387 *10^-5 ÷ 1.6 * 10^-19 = 1.492*10^14 electrons
Answer:
x = 7.62 m
Explanation:
First we need to calculate the weight of the rocket:
W = mg
we will use the gravity as 9.8 m/s². We have the mass (500 g or 0.5 kg) so the weight is:
W = 0.5 * 9.8 = 4.9 N
We know that the rocket exerts a force of 8 N. And from that force, we also know that the Weight is exerting a force of 4.9. From here, we can calculate the acceleration of the rocket:
F - W = m*a
a = F - W/m
Solving for a:
a = (8 - 4.9) / 0.5
a = 6.2 m/s²
As the rocket is accelerating in an upward direction, we can calculate the distance it reached, assuming that the innitial speed of the rocket is 0. so, using the following expression we will calculate the time which the rocket took to blast off:
y = vo*t + 1/2 at²
y = 1/2at²
Solving for t:
t = √2y/a
t = √2 * 20 / 6.2
t = √6.45 = 2.54 s
Now that we have the time, we can calculate the horizontal distance:
x = V*t
Solving for x:
x = 3 * 2.54 = 7.62 m
Answer:
7 mm per year
Explanation:
It is given that :
The Pacific plate is moving towards north at = 29 mm per year
The Pacific plate is moving towards west at = 20 mm per year
We have to calculate the total relative motion towards the northwest.
So we have to find the resultant of the two motions.
Since the two movements are perpendicular, therefore the angle between the two motions is 90 degree.
Therefore, finding their resultant,


R = 7
Therefore, total relative motion towards the northwest is 7 mm per year.
<span> A wavelenght is the distance between successive crests of a wave, especially points in a sound wave or electromagnetic wave.
</span>The diode laser operates at a wavelength<span> of 410 nm.</span>