Answer:
about 14.7°
Explanation:
The formula for the angle of the first minimum is ...
sin(θ) = λ/a
where θ is the angle relative to the door centerline, λ is the wavelength of the sound, and "a" is the width of the door.
The wavelength of the sound is the speed of sound divided by the frequency:
λ = (340 m/s)/(1300 Hz) ≈ 0.261538 m
Then the angle of interest is ...
θ = arcsin(0.261538/1.03) ≈ 14.7°
At an angle of about 14.7°, someone outside the room will hear no sound.
Some guidance notes which may help.To calculate the current flow, Ohm's law can be used. This can be written as current=voltage/resistance, or I=V/R. V is 1.5V.R for the copper wire quoted would be calculated as R = resistivity x length/cross sectional area. The area would be calculated from the formula area = pi x diameter squared/4So, R=resistivity x length divided by (pi x diameter squared/4)Until is the resistivity of copper is known, that's about as far as can be gone.Any further questions, please ask.
Answer:
A
C
D
B
Explanation.
At point A The body is at rest so k.E is zero but the height is maximum so that p.E is max.
Answer:
Open circuit
Explanation:
An open circuit is simply an electrical circuit that is not complete. In such a circuit, there is a gap and this will not allow the electric current to pass through.
Despite all the elements being complete in the circuit, an open circuit will halt the flow of electric current and will not do deliver the necessary energy it is supposed to.
In such a circuit, the wires are cut of and not connected properly.
The reverse is a closed circuit.