Answer:
Avogadro's law.
Explanation:
Avogadro’s law states that, equal volumes of all gases at the same temperature and pressure contain the same number of molecules.
Mathematically,
V n
V = Kn where V = volume in cm3, dm3, ml or L; n = number of moles of gas;
K = mathematical constant.
The ideal gas equation is a combination of Boyle's law, Charles' law and Avogadro’s law.
V 1/P at constant temperature (Boyle’s law)
V T at constant pressure ( Charles’law)
V n at constant temperature and pressure ( Avogadro’s law )
Combining the equations yields,
V nT/P
Introducing a constant,
V = nRT/P
PV = nRT
Where P = pressure in atm, Pa, torr, mmHg or Nm-2; V = volume in cm3, dm3, ml or L; T = temperature in Kelvin; n = number of moles of gas in mol; R = molar gas constant = 0.082 dm3atmK-1mol-1
Answer:
The technique in which people use machines to learn how to control their bodies is known as D, Biofeedback.
Explanation:
Biofeedback is a variety of different machines that help people learn how to control their bodies depending on their specific needs, varying from things like scalp sensors, electrocardiographs, electromyographs and more.
Answer:
Only kinetic.
Explanation:
Potential energy means it has the potential to move. Not something already in motion.
Answer:
the centripetal force on the satellite in the larger orbit is _one fourth_ as that on the satellite in the smaller orbit.
Explanation:
Mass of satellite, m
orbit radius of first, r1 = r
orbit radius of second, r2 = 2r
Centripetal force is given by

Where v be the orbital velocity, which is given by

So, the centripetal force is given by

where, g bet the acceleration due to gravity

So, the centripetal force

Gravitational force on the satellite having larger orbit
.... (1)
Gravitational force on the satellite having smaller orbit
.... (2)
Comparing (1) and (2),
F' = 4 F
So, the centripetal force on the satellite in the larger orbit is _one fourth_ as that on the satellite in the smaller orbit.
Answer: The spring constant is K=392.4N/m
Explanation:
According to hook's law the applied force F will be directly proportional to the extension e produced provided the spring is not distorted
The force F=ke
Where k=spring constant
e= Extention produced
h=2m
Given that
e=20cm to meter 20/100= 0.2m
m=100g to kg m=100/1000= 0.1kg
But F=mg
Ignoring air resistance
assuming g=9.81m/s²
Since the compression causes the plastic ball to poses potential energy hence energy stored in the spring
E=1/2ke²=mgh
Substituting our values to find k
First we make k subject of formula
k=2mgh/e²
k=2*0.1*9.81*2/0.1²
K=3.921/0.01
K=392.4N/m