Answer:
See answers below
Explanation:
a.
F = mg,
15.5 N = m(9.8 m/s²)
m = 1.58 kg
b.
Fnet = Applied force - resistance,
Fnet = 18 N - 4.30 N,
Fnet = 13.70 N
Fnet = ma
13.70 N = (1.58 kg)a
a = 8.67 m/s²
For the free body diagram, draw a box with an upward arrow labeled 15.5 N, a downward label labeled 15.5 N, a right label labeled 18 N, and a left label labeled 4.30 N.
Answer:
You could move something across the Earth with a little push. It would make fuel really efficient on those pathways. You could make a floor that is impossible to walk on. Everybody would just fall without traction.
Explanation:
<span><span>anonymous </span> 4 years ago</span>Any time you are mixing distance and acceleration a good equation to use is <span>ΔY=<span>V<span>iy</span></span>t+1/2a<span>t2</span></span> I would split this into two segments - the rise and the fall. For the fall, Vi = 0 since the player is at the peak of his arc and delta-Y is from 1.95 to 0.890.
For the upward part of the motion the initial velocity is unknown and the final velocity is zero, but motion is symetrical - it takes the same amount of time to go up as it does to go down. Physiscists often use the trick "I'm going to solve a different problem, that I know will give me the same answer as the one I was actually asked.) So for the first half you could also use Vi = 0 and a downward delta-Y to solve for the time.
Add the two times together for the total.
The alternative is to calculate the initial and final velocity so that you have more information to work with.
It's just asking you to sit down and COUNT the little squares in each sector.
It'll help you keep everything straight if you take a very sharp pencil and make a tiny dot in each square as you count it. That way, you'll be able to see which ones you haven't counted yet, and also you won't count a square twice when you see that it already has a dot in it.
(If, by some chance, this is a picture of the orbit of a planet revolving around the sun ... as I think it might be ... then you should find that both sectors jhave the same number of squares.)