Answer:
The new pressure of the gas is 15.40 kPa.
Explanation:
Gay-Lussac's law indicates that when there is a constant volume, as the temperature increases, the pressure of the gas increases. And when the temperature is decreased, the pressure of the gas decreases. Mathematically this law indicates that the quotient between pressure and temperature is constant:

On the other hand, Boyle's law says that the volume occupied by a certain gaseous mass at constant temperature is inversely proportional to the pressure. This law is expressed mathematically as:
P*V=k
Finally, Charles's law indicates that as the temperature increases, the volume of the gas increases and as the temperature decreases, the volume of the gas decreases. Mathematically, this law says that when the amount of gas and pressure are kept constant, the quotient that exists between the volume and the temperature will always have the same value:

Combined law equation is the combination of three gas laws called Boyle's, Charlie's and Gay-Lusac's law:

Studying an initial state 1 and a final state 2, it is fulfilled:

In this case:
- P1= 10 kPa
- V1= 200 L
- T1= 0 C= 273 K
- P2=?
- V2= 175 L
- T2= 95 C= 368 K
Replacing:

Solving:

P2= 15.40 kPa
<u><em>The new pressure of the gas is 15.40 kPa.</em></u>
<span>evening and flows toward the water</span>
Probability of it being a boy is 17/25 which is .68
Answer:
Option (c)
Explanation:
The rate of change of linear momentum is called force.
As the linear motion terms are analogous to the terms in rotational motion.
So, the rate of change of angular momentum is called torque.