Answer:
i agree
Explanation:
because it is in motion sooo it has a force of course
if it doesn't experience emotional Force it will stop being in motion
Complete question:
Seat belts and air bags save lives by reducing the forces exerted on the driver and passengers in an automobile collision. Cars are designed with a "crumple zone" in the front of the car. In the event of an impact, the passenger compartment decelerates over a distance of about 1 m as the front of the car crumples. An occupant restrained by seat belts and air bags decelerates with the car. In contrast, a passenger not wearing a seat belt or using an air bag decelerates over a distance of 5mm.
(a) A 60 kg person is in a head-on collision. The car's speed at impact is 15 m/s . Estimate the net force on the person if he or she is wearing a seat belt and if the air bag deploys.
Answer:
The net force on the person as the air bad deploys is -6750 N backwards
Explanation:
Given;
mass of the passenger, m = 60 kg
velocity of the car at impact, u = 15 m/s
final velocity of the car after impact, v = 0
distance moved as the front of the car crumples, s = 1 m
First, calculate the acceleration of the car at impact;
v² = u² + 2as
0² = 15² + (2 x 1)a
0 = 225 + 2a
2a = -225
a = -225 / 2
a = -112.5 m/s²
The net force on the person;
F = ma
F = 60 (-112.5)
F = -6750 N backwards
Therefore, the net force on the person as the air bad deploys is -6750 N backwards
Question:
How do mountain glaciers and continental glaciers differ in terms of dimensions, thickness and patterns of movement?
Answer:
<span>
Continental glaciers are thicker, much more expansive sheets. Mountain glaciers flow downhill as a result of gravity acting on the mass of ice. Continental glaciers move in response to pressure from the weight of material in their thick midsections.
</span>
Hope this helped!
~Shane :}
Given:
F = ax
where
x = distance by which the rubber band is stretched
a = constant
The work done in stretching the rubber band from x = 0 to x = L is
![W=\int_{0}^{L} Fdx = \int_{0}^{L}ax \, dx = \frac{a}{2} [x^{2} ]_{0}^{L} = \frac{aL^{2}}{2}](https://tex.z-dn.net/?f=W%3D%5Cint_%7B0%7D%5E%7BL%7D%20Fdx%20%3D%20%5Cint_%7B0%7D%5E%7BL%7Dax%20%5C%2C%20dx%20%3D%20%5Cfrac%7Ba%7D%7B2%7D%20%20%5Bx%5E%7B2%7D%20%5D_%7B0%7D%5E%7BL%7D%20%3D%20%20%5Cfrac%7BaL%5E%7B2%7D%7D%7B2%7D%20)
Answer:
I saw an example of yahoo saying that 114,000,000= 0.114, so ima take a guess and say that the way in expressing 146,000,000 in gigadollars would be 0.146. I'm sorry if I am wrong. But if it is right give me a thanks so I could know if I was right or not.