Answer:
x ’= 368.61 m, y ’= 258.11 m
Explanation:
To solve this problem we must find the projections of the point on the new vectors of the rotated system θ = 35º
x’= R cos 35
y’= R sin 35
The modulus vector can be found using the Pythagorean theorem
R² = x² + y²
R = 450 m
we calculate
x ’= 450 cos 35
x ’= 368.61 m
y ’= 450 sin 35
y ’= 258.11 m
Hey there!
So we know that m*v=P.
And in this question m=30
v=5 m/s
P = 30*5 Kgm/s
P = 150 Kgm/s
So, your final answer is 150 Kg.m/s
Hope this helps! :)
If you sight Polaris at 20 degrees above your Northern Horizon then you know that your latitude is 20 degrees north of the equator.
We determine the electric potential energy of the proton by multiplying the net electric potential to the charge of the proton. The net electric potential is the difference of the final state to the that of the initial state. So, it would be 275 - 125 = 150 V.
electric potential energy = 150 (<span>1.602 × 10-19) = 2.4x10^-17 J</span>