Answer:
805.48N/m
Explanation:
According to Hookes law
F = Ke
F is the force = mg
F = 2.4×9.8 = 23.52N
e is the extension = 2.92cm = 0.0292m
Force constant K = F/e
K = 23.52/0.0292
K = 805.48N/m
Hence the force constant of the spring is 805.48N/m
Answer:
The magnitude of the net force is √2F.
Explanation:
Since the two particles have the same charge Q, they exert the same force on the test charge; both attractive or repulsive. So, the angle between the two forces is 90° in any case. Now, as we know the magnitude of these forces and that they form a 90° angle, we can use the Pythagorean Theorem to calculate the magnitude of the resultant net force:
Then, it means that the net force acting on the test charge has a magnitude of √2F.
Here’s my work to your question. I used Newton’s Second Law and a kinematics equation to arrive at the answer.
Answer:
mass consumed by 235U each day = 2 kg
Explanation:
electrical power produced = 1 GW = 1 × 10⁹ × (6.24151 × 10¹⁸ ) eV
= 6.24151× 10²¹ MeV/s
thermal energy = 0.420 * 250 = 105 MeV
= 5.94 × 10¹⁹ fission/second
=5.94 × 10¹⁹× 24 × 60 ×60)
= 5.13 × 10²⁴ fission/day
mu = 235.04393 × 1.660× 10 ⁻²⁷ = 390.1729× 10⁻²⁷ Kg
M = mu ×5.13 × 10²⁴
= 390.1729× 10⁻²⁷ ×5.13 × 10²⁴
M = 2 kg(approx.)
mass consumed by 235U each day = 2 kg
A light year is a measurement of distance that is used in the space. It is the distance that a light traveled for 1 year on Earth or 365 days on Earth at a speed of 3 x 10^8 meters per second. To convert the units from light year to the SI unit meters, we simply make use of the definition of the unit. We do as follows:
18.9 light years ( 365 days / 1 light year ) ( 24 h / 1 day ) ( 3600 s / 1h ) ( 3 x 10^8 m/s) = 1.79 x 10^17 meters
Therefore, 18.9 light years is equal to 1.79 x 10^17 meters.