You're talking about a <em>tornado</em>.
It's not so much the low pressure that's so dangerous in the center of a tornado. It's more a matter of the high winds that are <em>caused </em>by the low pressure.
Answer:
showm
Explanation:
Consider a dipole having magnetic moment 'm' is placed in magnetic field
then the torque exerted by the field on the dipole is


Now to rotate the dipole in the field to its final position the work required to be done is




Minimum energy mB is for the case when m is anti parallel to B.
Minimum energy -mB is for the case when m is parallel to B.
Answer: 80J
Explanation:
According to the first principle of thermodynamics:
<em>"Energy is not created, nor destroyed, but it is conserved." </em>
Then this priciple (also called Law) relates the work and the transferred heat exchanged in a system through the internal energy
, which is neither created nor destroyed, it is only transformed. So, in this especific case of the compressed gas:
(1)
Where:
is the variation in the internal (thermal) energy of the system (the value we want to find)
is the heat transferred out of the gas (that is why it is negative)
is the work is done on the gas (as the gas is compressed, the work done on the gas must be considered positive )
On the other hand, the work done on the gas is given by:
(2)
Where:
is the constant pressure of the gas
is the variation in volume of the gas
In this case the initial volume is
and the final volume is
.
This means:
(3)
Substituting (3) in (2):
(4)
(5)
Substituting (5) in (1):
(6)
Finally:
This is the change in thermal energy in the compression process.

= Joules ÷ (0.5×Kilograms)
14J ÷ 8.5 = 1.64705882
Remember, 1.64705882 = v², so we need to find the square root.
The square root of 1.64705882 is 1.283377894464448
Hope this helps!
Answer:
a)
, b) 
Explanation:
a) The potential energy is:



b) Maximum final speed:

The final speed is:

