Answer:
σ = 4.998 E-4 C/m²
Explanation:
- 1 Coulomb (C) ≡ 6.241509 E18 electrons (e)
∴ # elect = 6.24 E14 elect
charge (Q):
⇒ Q = (6.24 E14 elect)/( 1 C /6.241509 E18 elect) = 9.998 E-5 C
charge density (σ):
∴ surface area (S) = 0.2 m²
⇒ σ = ( 9.998 E-5 C ) / ( 0.2 m²)
⇒ σ = 4.998 E-4 C/m²
In order to solve this, we need to know the standard cell potentials of the half reaction from the given overall reaction.
The half reactions with their standard cell potentials are:
<span>2ClO−3(aq) + 12H+(aq) + 10e- = Cl2(g) + 6H2O(l)
</span><span>E = +1.47
</span>
<span>Br(l) + 2e- = 2Br-
</span><span>E = +1.065
</span>
We solve for the standard emf by subtracting the standard emf of the oxidation from the reducation, so:
1.47 - 1.065 = 0.405 V
Answer:
1140 mmHg
Explanation:
1 atmosphere is 760 mmHg, so 1.5 atmospheres is ...
1.5×760 mmHg = 1140 mmHg
Answer:
It determines how biological molecules recognize and respond to one another with specificity.
Explanation:
A molecule has a characteristic size and shape. The precise shape of a molecule is usually very important to its function in the living cell. Molecular shape is crucial in biology because it determines how biological molecules recognize and respond to one another with specificity.
Answer:
the second answer its science behind it