<span>Using PV=nRT to find the moles and then convert back.
</span><span>4x=.8944
</span><span>solve for x then use the pressure for lets say CO2 put that into PV=nRT then solve for n then convert over.
</span>
<span>(.2236)(2)/(298*.08206) = .0183*96g/mol = 1.76g
</span>
<span>For C:
[NH3]^2[CO2][H2O] = Kp
x=0.2236
(2*.2236)^2(.2236)*(.2236)
=0.001
</span>
<span>The surface area is 109.3 square centimeters or 0.01093 square meters. The area formula requires that we use the radius of the disc. We can find the radius by diving the diameter by 2, so radius = 11.8/2 or 5.9 cm. We can use 3.14 as an approximation for π. The surface area is 3.14 * (5.9*5.9).
Since the diameter is given in cm, the surface area units are in square centimeters. To convert to meters, divide any measurement in centimeters by 100, but we need to convert to "square" meters, so we need to divide our square centimeters by 100 * 100, or by 10,000. Dividing 109.3 by 10,000 results in 0.01093 square "meters".</span>
Answer:
it's to blurry you can't see anything
Answer:
403 mL
Explanation:
First, I will assume that the mole is 1, because you are not specifing this.
Now, with the innitial data, we need to get the pressure:
T = 65+273 = 338 K
V = 500 / 1000 = 0.5 L
Now if:
PV = nRT
Then:
P = nRT/V and V = nRT/P
Let's calculate the P:
P = 1 * 0.082 * 338 / 0.5 = 55.432 atm
The standard temperature is 0° C or 273 K so, the volume is:
V = 1 * 0.082 * 273 / 55.432
V = 0.40384 L or simply 403.84 mL
At the Earth's North Pole, the north celestial pole is directly overhead, and all stars that are visible at all (that is, all stars in the northern celestial hemisphere) are circumpolar. As one travels south, the north celestial pole moves towards the northern horizon