Answer:
shown in the attachment
Explanation:
The detailed step by step and necessary mathematical application is as shown in the attachment.
There is a net force of 15N in The direction of Levi
Answer:
<em>The skydiver needs 0.71 seconds to reach 7 m/s</em>
Explanation:
<u>Free Fall Motion
</u>
When an object is dropped in free air (no friction) from a certain height h, it follows a free-fall motion, whose acceleration is due exclusively to gravity. The speed at a moment t when the object is dropped (from rest) is:

We need to find How long does the skydiver needs to reach 7 m/s. We solve for t



The skydiver needs 0.71 seconds to reach 7 m/s
Answer:
if we measure the change in height of the gas within the had and obtain a straight line in relation to the depth we can conclude that the air complies with Boye's law.
Explanation:
The air in the tube can be considered an ideal gas,
P V = nR T
In that case we have the tube in the air where the pressure is P1 = P_atm, then we introduce the tube to the water to a depth H
For pressure the open end of the tube is
P₂ = P_atm + ρ g H
Let's write the gas equation for the colon
P₁ V₁ = P₂ V₂
P_atm V₁ = (P_atm + ρ g H) V₂
V₂ = V₁ P_atm / (P_atm + ρ g h)
If the air obeys Boyle's law e; volume within the had must decrease due to the increase in pressure, if we measure the change in height of the gas within the had and obtain a straight line in relation to the depth we can conclude that the air complies with Boye's law.
The main assumption is that the temperature during the experiment does not change
Wood is typically an insulator(resists flow of electricity though it)
However, wet wood can be a conductor so really it depends