Answer:
Explanation:
The variables we know and are given are:
time, t = 20s
Charge, Q = 3x1-^-6 electrons, which is just 3x10^-6C (C stands for Coulombs, which is the unit for Charge)
We need to find the current, I, and since we know Q and t we can substitute these values into the given equation:
I=Q/t (which if you look at what the RHS is saying, its Charge over time, or more literally means the amount of charge passing a point over a period of time)
If we substitute these values, we will get I as:
I = Q / t
I = 3x10^-6 / 20
I = 1.5x10^-7 A
Hope this helps!
Dependent variable is your answer.
We are given information:
m = 0.0450 kg
Δv = 25.2 m/s
Δt = 1.95 ms = 0.00195s
To find force we use formula:
F = m * a
a is acceleration. To find it we use formula:
a = Δv / Δt
a = 25.2 / 0.00195
a = 12923.1 m/s^2
Now we can find force:
F = 0.0450 * 12923.1
F = 581.5 N
To check the effect of the ball's weight on this movement we need to calculate it and then compare it to this force.
W = m * g
W = 0.0450 * 9.81
W = 0.44145 N
We can see that weight is much smaller than the applied force so it's influence in negligible.
Answer:
Ф,
Ф
Explanation:
Now find the components NxNxN_x and NyNyN_y of N⃗ N→N_vec in the tilted coordinate system of Part B. Express your answer in terms of the length of the vector NNN and the angle θθtheta, with the components separated by a comma.
Vectors are quantities that have both magnitude and direction while scalar quantities have only magnitude but no direction.
This a vector quantity
from the diagram the horizontal component of the length of the vector will be
Ф
the vertical component will be
Ф
this is in the opposite direction because the x can be extrapolated to the negative axis