Displacement from the center line for minimum intensity is 1.35 mm , width of the slit is 0.75 so Wavelength of the light is 506.25.
<h3>How to find Wavelength of the light?</h3>
When a wave is bent by an obstruction whose dimensions are similar to the wavelength, diffraction is observed. We can disregard the effects of extremes because the Fraunhofer diffraction is the most straightforward scenario and the obstacle is a long, narrow slit.
This is a straightforward situation in which we can apply the
Fraunhofer single slit diffraction equation:
y = mλD/a
Where:
y = Displacement from the center line for minimum intensity = 1.35 mm
λ = wavelength of the light.
D = distance
a = width of the slit = 0.75
m = order number = 1
Solving for λ
λ = y + a/ mD
Changing the information that the issue has provided:
λ = 1.35 * 10^-3 + 0.75 * 10^-3 / 1*2
=5.0625 *10^-7 = 506.25
so
Wavelength of the light 506.25.
To learn more about Wavelength of the light refer to:
brainly.com/question/15413360
#SPJ4
Answer:
0.8J
Explanation:
Given parameters:
Force = 20N
Compression = 0.08m
Unknown:
Spring constant = ?
Elastic potential energy = ?
Solution:
To solve this problem, we use the expression below:
F = k e
F is the force
k is the spring constant
e is the compression
20 = k x 0.08
k = 250N/m
Elastic potential energy;
EPE =
k e² =
x 250 x 0.08²
Elastic potential energy = 0.8J
Answer with Explanation:
We are given that
Magnetic field,B=

Length of wire,l=15 m
Current,I=19 A
a.We have to find the magnitude of magnetic force and direction of magnetic force.
Magnetic force,F=
Using the formula


Direction=

15 degree above the horizontal in the northward direction.
The answer is true
Step by step explanation:
In my estimation I would say C, I was leaning towards A, but I believe that would merely be "incomplete combustion." I hope this was semi-helpful!