It MUST be either glue or gravity.
Preserved fossil<span> (like a fossil in amber, ice or tar.</span>
Answer:
9 meters
Explanation:
Given:
Mass of Avi is, 
Spring constant is, 
Compression in the spring is, 
Let the maximum height reached be 'h' m.
Now, as the spring is compressed, there is elastic potential energy stored in the spring. This elastic potential energy is transferred to Avi in the form of gravitational potential energy.
So, by law of conservation of energy, decrease in elastic potential energy is equal to increase in gravitational potential energy.
Decrease in elastic potential energy is given as:

Now, increase in gravitational potential energy is given as:

Now, increase in gravitational potential energy is equal decrease in elastic potential energy. Therefore,

Therefore, Avi will reach a maximum height of 9 meters.
Answer:
a = 1.72 m/s²
Explanation:
The given kinematic equation is the 2nd equation of motion. The equation is as follows:
xf = xi + (Vi)(t) + (1/2)(a)t²
where,
xf = the final position = 5000 m
xi = the initial position = 1000 m
Vi = the initial velocity = 15 m/s
t = the time taken = 60 s
a = acceleration = ?
Therefore,
5000 m = 1000 m + (15 m/s)(60 s) + (1/2)(a)(60 s)²
5000 m = 1000 m + 900 m + a(1800 s²)
5000 m = 1900 m + a(1800 s²)
5000 m - 1900 m = a(1800 s²)
a(1800 s²) = 3100 m
a = 3100 m/1800 s²
<u>a = 1.72 m/s²</u>
Answer:
169/4 ft/min.
Explanation:
See the attached picture.