Answer:
The unrealistically large acceleration experienced by the space travelers during their launch is 2.7 x 10⁵ m/s².
How many times stronger than gravity is this force? 2.79 x 10⁴ g.
Explanation:
given information:
s = 220 m
final speed, vf = 10.97 km/s = 10970 m/s
g = 9.8 m/s²
he unrealistically large acceleration experienced by the space travelers during their launch
vf² = v₀²+2as, v₀ = 0
vf² = 2as
a =vf²/2s
= (10970)²/(2x220)
= 2.7 x 10⁵ m/s²
Compare your answer with the free-fall acceleration
a/g = 2.7 x 10⁵/9.8
a/g = 2.79 x 10⁴
a = 2.79 x 10⁴ g
Answer:
it moves 25 inches.
Explanation:
the east west bit isn't important, ignore it. if an ant starts at 6 then moves to 19 then we need to subtract 19 from 6, that's 13. then it moves to 7. the difference between 19 and 7 is 12. add that to 13 and you get 25. it's important to remember that there is no such thing as negative distance. if it moved, then it counts.
Answer:
1) No, the car does not travel at constant speed.
2) V = 9 ft/s
3) No, the car does not travel at constant speed.
4) V = 5.9 ft/s
Explanation:
In order to know if the car is traveling at constant speed we need to derive the given formula. That way we get speed as a function of time:
V(t) = 2*t + 2 Since the speed depends on time, the speed is not constant at any time.
For the average speed we evaluate the formula for t=2 and t=5:
d(2) = 8 ft and d(5) = 35 ft

Again, for the average speed we evaluate the formula for t=1.8 and t=2.1:
d(1.8) = 6.84 ft and d(2.1) = 8.61 ft

"Acceleration" does NOT mean speeding up. It also doesn't mean
slowing down. Acceleration means ANY change in the speed
OR DIRECTION of motion.
The only kind of motion that's NOT accelerated is motion at a steady
speed AND in a straight line.
Even when your speed is steady, you're accelerating if your direction
is changing.
A few examples:
(no speeds are changing):
-- driving on a curved road, or turning a corner
-- going around a curve on a skateboard, a bike, or a Segway
-- running on a quarter-mile track
-- an Indy car cruising a practice lap around the track
-- water spinning, getting ready to go down the drain
-- any point on the blade of a fan
-- the little ball going around the inside of a Roulette wheel
-- the Moon in its orbit around the Earth
-- the Earth in its orbit around the sun