D ............................
Answer:
The value is
Explanation:
From the question we are told that
The power output from the sun is 
The average wavelength of each photon is 
Generally the energy of each photon emitted is mathematically represented as

Here h is the Plank's constant with value 
c is the speed of light with value 
So
=>
Generally the number of photons emitted by the Sun in a second is mathematically represented as

=> 
=>
Answer:
Hi there!
The answer is eleven billion years old.
Answer:
λ = 162 10⁻⁷ m
Explanation:
Bohr's model for the hydrogen atom gives energy by the equation
= - k²e² / 2m (1 / n²)
Where k is the Coulomb constant, e and m the charge and mass of the electron respectively and n is an integer
The Planck equation
E = h f
The speed of light is
c = λ f
E = h c /λ
For a transition between two states we have
-
= - k²e² / 2m (1 /
² -1 /
²)
h c / λ = -k² e² / 2m (1 /
² - 1/
²)
1 / λ = (- k² e² / 2m h c) (1 /
² - 1/
²)
The Rydberg constant with a value of 1,097 107 m-1 is the result of the constant in parentheses
Let's calculate the emission of the transition
1 /λ = 1.097 10⁷ (1/10² - 1/8²)
1 / λ = 1.097 10⁷ (0.01 - 0.015625)
1 /λ = 0.006170625 10⁷
λ = 162 10⁻⁷ m
Answer:
"Emergency resource guidebook" would provide you with the best initial information about this chemical
Explanation:
This guidebook is for the first responders in case of the beginning of any dangerous goods or the hazardous materials transportation incident. It is used in firefighters, paramedics and for the police officers, in countries like Canada, Mexico and also in the United states when responding to these accident cases becomes delay. The book has different colours in it, for chemicals it will be green colour whereas the blue or the yellow colour shows the toxic inhalation materials. In TIH it has initial isolation distance and protective action distance information against the accident. The white is the host specific.