when a hole is made at the bottom of the container then water will flow out of it
The speed of ejected water can be calculated by help of Bernuolli's equation and Equation of continuity.
By Bernoulli's equation we can write

Now by equation of continuity


from above equation we can say that speed at the top layer is almost negligible.

now again by equation of continuity


here we have


now speed is given by


B. It's randomness would increase
Because the Second Law of Thermodynamics states that as energy is transferred or transformed, more and more of it is wasted. It also states that there is a natural tendency of any isolated system to degenerate into a more disordered state.
Answer:
Acceleration
Explanation:
The quantity of the rate of change of velocity is termed the acceleration of the body.
Acceleration is the rate of change of velocity with time;
A =
A is the acceleration
v is the final velocity
u is the initial velocity
t is the time taken
Answer:
Explanation:
Since this is a distance v time graph, the slope of the line from 1s to 3s is the velocity. However, it looks like, at t=3, the velocity is 0, so getting the definite velocity is not going to happen. We can estimate it as closely as possible. Since the line is tending from the upper left to the lower right, the slope is negative, so the velocity is also negative. That leaves only C or D as our answers. And the slope is closer to -1 than to -5, so choice D. is the one you want.
Answer:

Explanation:
The gravitational potential energy gets transformed into translational and rotational kinetic energy, so we can write
. Since
(the ball rolls without slipping) and for a solid sphere
, we have:

So our translational speed will be:
