From equation of motion v^2 = u^2 +2aS
Hence, the final velocity is 40 m/s.
<em><u>hope </u></em><em><u>it's </u></em><em><u>help </u></em><em><u>you</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>!</u></em><em><u>!</u></em><em><u>!</u></em><em><u>!</u></em><em><u>!</u></em><em><u>!</u></em><em><u>!</u></em><em><u>!</u></em><em><u>!</u></em><em><u>!</u></em><em><u>!</u></em><em><u>!</u></em><em><u>!</u></em><em><u>!</u></em><em><u>! </u></em>
<em><u>#</u></em><em><u>rishu</u></em>
The container that most likely contains a liquid is container A.
Let me know if this helped or not! :)
Answer:
Workdone = 20 Joules
Explanation:
Given the following data;
Force = 10N
Extension, e = 4cm to meters = 4/100 = 0.04 meters
Workdone extension = 40cm to meters = 40/100 = 0.4 meters
To find the work done;
First of all, we would find the spring constant using the formula;
Force = spring constant * extension
10 = spring constant * 0.04
Spring constant = 10/0.04
Spring constant = 250 N/m
Next, we find the work done;
Workdone = ½ke²
Where;
k is the spring constant.
e is the extension.
Substituting into the formula, we have;
Workdone = ½ * 250 * 0.4²
Workdone = 125 * 0.16
Workdone = 20 Joules
Answer:
the magnitude of the total angular momentum of the blades is <em>743.71 kg·m²</em>
Explanation:
Converting the angular speed into radians per second:
ω = 334 rpm · (2π rad / 1 rev) · (1 min / 60 s)
ω = 34.98 rad/s
The rotational kinetic energy of the blades is given by:
EK = 1/2 I ω²
where
- I is the moment of inertia
- ω is the angular speed
Therefore, rearranging the above equation, we get:
1/2 I ω² = EK
I ω² = 2 EK
I = 2(EK) / ω²
I = 2(4.55 × 10⁵ J) / (34.98 rad/s)²
<em>I = 743.71 kg·m²</em>
<em></em>
Therefore, the magnitude of the total angular momentum of the blades is <em>743.71 kg·m²</em>.