Answer:
In these situations, the median is generally considered to be the best representative of the central location of the data. The more skewed the distribution, the greater the difference between the median and mean, and the greater emphasis should be placed on using the median as opposed to the mean.
Answer:
5) EG=HG because it's corresponding part of congruent triangles are congruent (CPCTC)
Answer:
y = -3x-1
Step-by-step explanation:
all u had to do was plug it into y = mx+b
Answer:
20+h = 46
Step-by-step explanation:
it doesn't ask to solve it so that's the answer
The Jacobian for this transformation is
![J = \begin{bmatrix} x_u & x_v \\ y_u & y_v \end{bmatrix} = \begin{bmatrix} 4 & 0 \\ 0 & 3 \end{bmatrix}](https://tex.z-dn.net/?f=J%20%3D%20%5Cbegin%7Bbmatrix%7D%20x_u%20%26%20x_v%20%5C%5C%20y_u%20%26%20y_v%20%5Cend%7Bbmatrix%7D%20%3D%20%5Cbegin%7Bbmatrix%7D%204%20%26%200%20%5C%5C%200%20%26%203%20%5Cend%7Bbmatrix%7D)
with determinant
, hence the area element becomes
![dA = dx\,dy = 12 \, du\,dv](https://tex.z-dn.net/?f=dA%20%3D%20dx%5C%2Cdy%20%3D%2012%20%5C%2C%20du%5C%2Cdv)
Then the integral becomes
![\displaystyle \iint_{R'} 4x^2 \, dA = 768 \iint_R u^2 \, du \, dv](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Ciint_%7BR%27%7D%204x%5E2%20%5C%2C%20dA%20%3D%20768%20%5Ciint_R%20u%5E2%20%5C%2C%20du%20%5C%2C%20dv)
where
is the unit circle,
![\dfrac{x^2}{16} + \dfrac{y^2}9 = \dfrac{(4u^2)}{16} + \dfrac{(3v)^2}9 = u^2 + v^2 = 1](https://tex.z-dn.net/?f=%5Cdfrac%7Bx%5E2%7D%7B16%7D%20%2B%20%5Cdfrac%7By%5E2%7D9%20%3D%20%5Cdfrac%7B%284u%5E2%29%7D%7B16%7D%20%2B%20%5Cdfrac%7B%283v%29%5E2%7D9%20%3D%20u%5E2%20%2B%20v%5E2%20%3D%201)
so that
![\displaystyle 768 \iint_R u^2 \, du \, dv = 768 \int_{-1}^1 \int_{-\sqrt{1-v^2}}^{\sqrt{1-v^2}} u^2 \, du \, dv](https://tex.z-dn.net/?f=%5Cdisplaystyle%20768%20%5Ciint_R%20u%5E2%20%5C%2C%20du%20%5C%2C%20dv%20%3D%20768%20%5Cint_%7B-1%7D%5E1%20%5Cint_%7B-%5Csqrt%7B1-v%5E2%7D%7D%5E%7B%5Csqrt%7B1-v%5E2%7D%7D%20u%5E2%20%5C%2C%20du%20%5C%2C%20dv)
Now you could evaluate the integral as-is, but it's really much easier to do if we convert to polar coordinates.
![\begin{cases} u = r\cos(\theta) \\ v = r\sin(\theta) \\ u^2+v^2 = r^2\\ du\,dv = r\,dr\,d\theta\end{cases}](https://tex.z-dn.net/?f=%5Cbegin%7Bcases%7D%20u%20%3D%20r%5Ccos%28%5Ctheta%29%20%5C%5C%20v%20%3D%20r%5Csin%28%5Ctheta%29%20%5C%5C%20u%5E2%2Bv%5E2%20%3D%20r%5E2%5C%5C%20du%5C%2Cdv%20%3D%20r%5C%2Cdr%5C%2Cd%5Ctheta%5Cend%7Bcases%7D)
Then
![\displaystyle 768 \int_{-1}^1 \int_{-\sqrt{1-v^2}}^{\sqrt{1-v^2}} u^2\,du\,dv = 768 \int_0^{2\pi} \int_0^1 (r\cos(\theta))^2 r\,dr\,d\theta \\\\ ~~~~~~~~~~~~ = 768 \left(\int_0^{2\pi} \cos^2(\theta)\,d\theta\right) \left(\int_0^1 r^3\,dr\right) = \boxed{192\pi}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20768%20%5Cint_%7B-1%7D%5E1%20%5Cint_%7B-%5Csqrt%7B1-v%5E2%7D%7D%5E%7B%5Csqrt%7B1-v%5E2%7D%7D%20u%5E2%5C%2Cdu%5C%2Cdv%20%3D%20768%20%5Cint_0%5E%7B2%5Cpi%7D%20%5Cint_0%5E1%20%28r%5Ccos%28%5Ctheta%29%29%5E2%20r%5C%2Cdr%5C%2Cd%5Ctheta%20%5C%5C%5C%5C%20~~~~~~~~~~~~%20%3D%20768%20%5Cleft%28%5Cint_0%5E%7B2%5Cpi%7D%20%5Ccos%5E2%28%5Ctheta%29%5C%2Cd%5Ctheta%5Cright%29%20%5Cleft%28%5Cint_0%5E1%20r%5E3%5C%2Cdr%5Cright%29%20%3D%20%5Cboxed%7B192%5Cpi%7D)