We know, by conservation of energy :

Therefore,

Putting given values, we get :

Therefore, the spring be compressed to 6.93 cm to send the ball twice as high.
Hence, this is the required solution.
Answer:
a.) The main scale reading is 10.2cm
b.) Division 7 = 0.07
c.) 10.27 cm
d.) 10.31 cm
e.) 10.24 cm
Explanation:
The figure depicts a vernier caliper readings
a.) The main scale reading is 10.2 cm
The reading before the vernier scale
b.) Division 7 = 0.07
the point where the main scale and vernier scale meet
c.) The observed readings is
10.2 + 0.07 = 10.27 cm
d.) If the instrument has a positive zero error of 4 division
correct reading = 10.27 + 0.04 = 10.31cm
e.) If the instrument has a negative zero error of 3 division
correct reading = 10.27 - 0.03 = 10.24cm
Answer:
Magnitude of the average force exerted on the wall by the ball is 800N
Explanation:
Given
Contact Time = t = 0.05 seconds
Mass (of ball) = 0.80kg
Initial Velocity = u = 25m/s
Final Velocity = 25m/s
Magnitude of the average force exerted on the wall by the ball is given by;
F = ma
Where m = 0.8kg
a = Average Acceleration
a = (u + v)/t
a = (25 + 25)/0.05
a = 50/0.05
a = 1000m/s²
Average Force = Mass * Average Acceleration
Average Force = 0.8kg * 1000m/s²
Average Force = 800kgm/s²
Average Force = 800N
Hence, the magnitude of the average force exerted on the wall by the ball is 800N
Answer:
A
Explanation:
Lance was never a bright young fella so he rolled down a hill and lost his left boot
Answer:
Positive velocity and negative acceleration
Explanation:
An object moving in the positive direction has a positive velocity.
An object that's slowing down while moving in the positive direction has a negative acceleration.