<span>The law of conservation of matter and energy relates to the cycles in nature, and by that it is also applied to rocks and other materials. All of the rock in the Earth is recycled and accounted for during the rock cycle. Rocks experience physical change, the composition of the material stays the same, it may just change how it looks and chemical changes occur (the suubstance undergoes a chemical reaction that changes the actual makeup of the substance).</span>
Answer:
Compaction and cementation
Explanation:
Cementation: As ions are deposited by fluids to form a compound that hardens loose sedimentary rocks.
Compaction: As the density of sedimentary rocks on edge of them are forced together through sediments.
Answer:
h' = 55.3 m
Explanation:
First, we analyze the horizontal motion of the projectile, to find the time taken by the arrow to reach the orange. Since, air friction is negligible, therefore, the motion shall be uniform:
s = vt
where,
s = horizontal distance between arrow and orange = 60 m
v = initial horizontal speed of the arrow = v₀ Cos θ
θ = launch angle = 30°
v₀ = launch speed = 35 m/s
Therefore,
60 m = (35 m/s)Cos 30° t
t = 60 m/30.31 m/s
t = 1.98 s
Now, we analyze the vertical motion to find the height if arrow at this time. Using second equation of motion:
h = Vi t + (1/2)gt²
where,
Vi = Vertical Component of initial Velocity = v₀ Sin θ = (35 m/s)Sin 30°
Vi = 17.5 m/s
Therefore,
h = (17.5 m/s)(1.98 s) + (1/2)(9.81 m/s²)(1.98 s)²
h = 34.6 m + 19.2 m
h = 53.8 m
since, the arrow initially had a height of y = 1.5 m. Therefore, its final height will be:
h' = h + y
h' = 53.8 m + 1.5 m
<u>h' = 55.3 m</u>
C. fly in a straight line unless an outside force changes its course.