Answer:
Mass = 18.0 kg
Explanation:
From Hooke's law,
F = ke
where: F is the force, k is the spring constant and e is the extension.
But, F = mg
So that,
mg = ke
On the Earth, let the gravitational force be 10 m/
.
3.0 x 10 = k x 5.0
30 = 5k
⇒ k =
................ 1
On the Moon, the gravitational force is
of that on the Earth.
m x
= k x 5.0
= 5k
⇒ k =
............. 2
Equating 1 and 2, we have;
= 
m = 
= 18.0
m = 18.0 kg
The mass required to produce the same extension on the Moon is 18 kg.
This is a classic example of conservation of energy. Assuming that there are no losses due to friction with air we'll proceed by saying that the total energy mus be conserved.

Now having information on the speed at the lowest point we can say that the energy of the system at this point is purely kinetic:

Where m is the mass of the pendulum. Because of conservation of energy, the total energy at maximum height won't change, but at this point the energy will be purely potential energy instead.

This is the part where we exploit the Energy's conservation, I'm really insisting on this fact right here but it's very very important, The totam energy Em was

It hasn't changed! So inserting this into the equation relating the total energy at the highest point we'll have:

Solving for h gives us:

It doesn't depend on mass!
Answer:
It doesn't give light
Explanation:
No Flowing of electricity
Answer:
Thermal energy typically flows from a warmer material to a cooler material. Generally, when thermal energy is transferred to a material, the motion of its particles speeds up and its temperature increases. There are three methods of thermal energy transfer: conduction, convection, and radiation.
Explanation:
ion know...